I am trying to write a program about Simpson's Law.What I am trying to do is use as error as shown in this picture:
.
In the code i write the Ih is my f1 and Ih/2 is my f2.If the error doesnt happen then the steps get halved.
However I get this error
Traceback (most recent call last):
File "C:\Users\Egw\Desktop\Analysh\Askhsh1\example.py", line 22, in <module>
sim2 = simps(f2, x2)
File "C:\Users\Egw\Desktop\Analysh\Askhsh1\venv\lib\site-packages\scipy\integrate\_quadrature.py", line 436, in simps
return simpson(y, x=x, dx=dx, axis=axis, even=even)
File "C:\Users\Egw\Desktop\Analysh\Askhsh1\venv\lib\site-packages\scipy\integrate\_quadrature.py", line 542, in simpson
last_dx = x[slice1] - x[slice2]
IndexError: index -1 is out of bounds for axis 0 with size 0
Process finished with exit code 1
My code is
import numpy as np
from sympy import *
from scipy.integrate import simps
a = 0
b = np.pi * 2
N = 100
ra = 0.1 # ρα
R = 0.05
fa = 35 * (np.pi/180) # φα
za = 0.4
Q = 10**(-6)
k = 9 * 10**9
aa = sqrt(ra**2 + R**2 + za**2)
error = 5 * 10**(-9)
while True:
x1 = np.linspace(a, b, N)
f1 = 1 / ((aa ** 2 - 2 * ra * R * np.cos(x1 - fa)) ** (3 / 2))
sim1 = simps(f1, x1)
x2 = np.linspace(a, b, int(N/2))
f2 = 1 / ((aa ** 2 - 2 * ra * R * np.cos(x2 - fa)) ** (3 / 2))
sim2 = simps(f2, x2)
if abs(sim1 - sim2) < error:
break
else:
N = int(N/2)
print(sim1)
I wasnt expecting any error,and basically expecting to calculate correctly.
When you reduce the grid step by half h -> h/2, the number of grid steps in turn grows N -> 2 * N, so you have to make two changes in your code:
x2 = np.linspace(a, b, 2 * N)
N = 2 * N
The resulting code would be
import numpy as np
from sympy import *
from scipy.integrate import simps
a = 0
b = np.pi * 2
N = 100
ra = 0.1 # ρα
R = 0.05
fa = 35 * (np.pi/180) # φα
za = 0.4
Q = 10**(-6)
k = 9 * 10**9
aa = sqrt(ra**2 + R**2 + za**2)
error = 5 * 10**(-9)
while True:
x1 = np.linspace(a, b, N)
f1 = 1 / ((aa ** 2 - 2 * ra * R * np.cos(x1 - fa)) ** (3 / 2))
sim1 = simps(f1, x1)
x2 = np.linspace(a, b, 2 * N)
f2 = 1 / ((aa ** 2 - 2 * ra * R * np.cos(x2 - fa)) ** (3 / 2))
sim2 = simps(f2, x2)
if abs(sim1 - sim2) < error:
break
else:
N = 2 * N
print(sim1)
And this prints the value
87.9765411043221
with error consistent with the threshold
abs(sim1 - sim2) = 4.66441463231604e-9