How can I omit several groups of covariates from the regression table and replace them with the group labels in stargazer? For example, if under city controls
there is size
and population
, and under individual controls
there is age
and gender
, how can I omit size
, population
, age
, and gender
and instead have something like city controls in the model?: no yes
and individual controls in the model?: no yes
.
By the way, all covariates from the same group would join or leave the model together.
Please provide a minimal example. Perhaps you are looking for something like this:
data("Produc", package="plm")
Produc$cat <- cut(Produc$gsp,
breaks=quantile(Produc$gsp),
labels=c('Bad', 'OK', 'Good', 'Great'))
fe <- plm(pcap ~ hwy + water + unemp + cat,
data=Produc, index=c("state", "year"), model = "within")
stargazer(fe, type="text")
========================================
Dependent variable:
---------------------------
pcap
----------------------------------------
hwy 2.025***
(0.054)
water 1.976***
(0.043)
unemp -17.644
(19.716)
catOK 462.982*
(269.838)
catGood 679.697**
(329.131)
catGreat 430.046
(388.285)
----------------------------------------
Observations 815
R2 0.902
Adjusted R2 0.895
F Statistic 1,170.861*** (df = 6; 761)
========================================
Note: *p<0.1; **p<0.05; ***p<0.01
Use the option omit
to omit certain variables. And option add.lines
to add any note you like.
stargazer(fe, type="text", omit = "cat")
stargazer(fe, type="text", omit = "cat",
add.lines=list(c("Cats", "YES")))
========================================
Dependent variable:
---------------------------
pcap
----------------------------------------
hwy 2.025***
(0.054)
water 1.976***
(0.043)
unemp -17.644
(19.716)
----------------------------------------
Cats YES
Observations 815
R2 0.902
Adjusted R2 0.895
F Statistic 1,170.861*** (df = 6; 761)
========================================
Note: *p<0.1; **p<0.05; ***p<0.01