pythonmachine-learningpytorchlearning-rate

how MultiStepLR works in PyTorch


I'm new to PyTorch and am working on a toy example to understand how weight decay works in learning rate passed into the optimizer. When I use MultiStepLR , I was expecting to decrease the learning rate in given epoch numbers, however, it does not work as I intended. What am I doing wrong?

import random
import torch
import pandas as pd
import numpy as np
from torch import nn
from torch.utils.data import Dataset,DataLoader,TensorDataset
from torchvision import datasets, transforms

model = nn.Sequential(nn.Linear(n_input, n_hidden),
                      nn.ReLU(),
                      nn.Linear(n_hidden, n_out),
                      nn.ReLU())
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)

scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[2,4], gamma=0.1)
for e in range(5):
    scheduler.step()
    print(e, ' : lr', scheduler.get_lr()[0],"\n")

0  : lr 0.1 

1  : lr 0.0010000000000000002 

2  : lr 0.010000000000000002 

3  : lr 0.00010000000000000003 

4  : lr 0.0010000000000000002 

The expected behavior in learning rate is [0.1, 0.1, 0.01, 0.01, 0.001]


Solution

  • When running your code I get the following warning:

    /home/user/anaconda3/envs/eai/lib/python3.8/site-packages/torch/optim/lr_scheduler.py:138: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`.
    In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`.
    Failure to do this will result in PyTorch skipping the first value of the learning rate schedule.
    See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
      warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. "
    
    /home/user/anaconda3/envs/eai/lib/python3.8/site-packages/torch/optim/lr_scheduler.py:429: UserWarning: To get the last learning rate computed by the scheduler, please use `get_last_lr()`.
      warnings.warn("To get the last learning rate computed by the scheduler, "
    

    Your code can be fixed by following the warning message and using get_last_lr:

    import random
    import torch
    import pandas as pd
    import numpy as np
    from torch import nn
    from torch.utils.data import Dataset,DataLoader,TensorDataset
    from torchvision import datasets, transforms
    
    model = nn.Sequential(nn.Linear(4, 4),
                          nn.ReLU(),
                          nn.Linear(4, 4),
                          nn.ReLU())
    loss_function = nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
    
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[2,4], gamma=0.1)
    for e in range(5):
        scheduler.step()
        print(e, ' : lr', scheduler.get_last_lr(),"\n")
    

    With output:

    0  : lr [0.1] 
    
    1  : lr [0.010000000000000002] 
    
    2  : lr [0.010000000000000002] 
    
    3  : lr [0.0010000000000000002] 
    
    4  : lr [0.0010000000000000002] 
    

    If you want the learning rate to decrease each epoch instead you should remove the milestones parameter.