I am using Toshihiko Yanase's code for doing cross validation on my hyperparameter optimizer with Optuna. Here is the code that I am using:
def objective(trial, train_loader, valid_loader):
# Remove the following line.
# train_loader, valid_loader = get_mnist()
...
return accuracy
def objective_cv(trial):
# Get the MNIST dataset.
dataset = datasets.MNIST(DIR, train=True, download=True, transform=transforms.ToTensor())
fold = KFold(n_splits=3, shuffle=True, random_state=0)
scores = []
for fold_idx, (train_idx, valid_idx) in enumerate(fold.split(range(len(dataset)))):
train_data = torch.utils.data.Subset(dataset, train_idx)
valid_data = torch.utils.data.Subset(dataset, valid_idx)
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=BATCHSIZE,
shuffle=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=BATCHSIZE,
shuffle=True,
)
accuracy = objective(trial, train_loader, valid_loader)
scores.append(accuracy)
return np.mean(scores)
study = optuna.create_study(direction="maximize")
study.optimize(objective_cv, n_trials=20, timeout=600)
Unfortunately, using the code this way, it does not record each folds val loss to the Optuna dashboard. Is there a way to record each folds val loss to the Optuna dashboard?
Each splits validation loss can be recorded in the system_attrs
of the Trial object of the current trial. The system_attrs
can be seen in the dashboard under the respective trial as you wished.
The modified code having the desired functionality is:
def objective(trial, train_loader, valid_loader):
# Remove the following line.
# train_loader, valid_loader = get_mnist()
...
return accuracy
def objective_cv(trial):
# Get the MNIST dataset.
dataset = datasets.MNIST(DIR, train=True, download=True, transform=transforms.ToTensor())
fold = KFold(n_splits=3, shuffle=True, random_state=0)
scores = []
trial.set_system_attr("Val loss of fold",[]) #to record each individual final loss of the current fold
for fold_idx, (train_idx, valid_idx) in enumerate(fold.split(range(len(dataset)))):
train_data = torch.utils.data.Subset(dataset, train_idx)
valid_data = torch.utils.data.Subset(dataset, valid_idx)
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=BATCHSIZE,
shuffle=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=BATCHSIZE,
shuffle=True,
)
accuracy = objective(trial, train_loader, valid_loader)
scores.append(accuracy)
trial.set_system_attr("Val loss of fold",trial.system_attrs["Val loss of fold"]+[accuracy]) #here is the objective value is added to the record
return np.mean(scores)
study = optuna.create_study(direction="maximize")
study.optimize(objective_cv, n_trials=20, timeout=600)