pythonpandasgroup-bycumsum

How to create a cumulative list of values, by group, in a Pandas dataframe?


I'm trying to add a new column to the DataFrame, that consists of a cumulative list (by group) of another column.

For example:

df = pd.DataFrame(data={'group1': [1, 1, 2, 2, 2], 'value': [1, 2, 3, 4, 5]})

Expected output:

   group1  value cumsum_column
0       1      1           [1]
1       1      2        [1, 2]
2       2      3           [3]
3       2      4        [3, 4]
4       2      5     [3, 4, 5]

What is the best way to accomplish this?

One way I've tried that doesn't work:

df['value_list'] = [[i] for i in df['value']]
df['cumsum_column'] = df.groupby('group1')['value_list'].cumsum()

This throws the error:

TypeError: cumsum is not supported for object dtype

EDIT: To be clearer, I'm looking to find out why this is not working + looking for the fastest way for this to happen — as I'm looking to use it on big dataframes.


Solution

  • You can use a custom function in groupby.transform:

    def accumulate(s):
        out = [[]]
        for x in s:
            out.append(out[-1]+[x])
        return out[1:]
    
    df['cumsum_column'] = df.groupby('group1')['value'].transform(accumulate)
    

    Output:

       group1  value cumsum_column
    0       1      1           [1]
    1       1      2        [1, 2]
    2       2      3           [3]
    3       2      4        [3, 4]
    4       2      5     [3, 4, 5]
    

    Why your solution failed?

    because groupby.cumsum is restricted to numeric data (Thus the "TypeError: cumsum is not supported for object dtype" error).

    You would have needed to use a lambda in transform (df.groupby('group1')['value_list'].transform(lambda x: x.cumsum()).

    timings:

    Tested on 100k rows with 100 groups.

    %%timeit
    df['cumsum_column'] = df.groupby('group1')['value'].transform(accumulate)
    # 199 ms ± 12.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
    
    %%timeit
    df['value_list'] = [[i] for i in df['value']]
    df['cumsum_column'] = df.groupby('group1')['value_list'].transform(lambda x: x.cumsum())
    # 207 ms ± 7.33 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
    
    %%timeit
    f = lambda x: [list(x)[:i] for i, y in enumerate(x, 1)]
    df['cumsum_column'] = df.groupby('group1')['value'].transform(f)
    # 6.65 s ± 483 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
    
    ### fix of the logic of the other solution to run faster
    %%timeit
    g = df.groupby('group1')['value']
    d = g.agg(list)
    df['cumsum_column'] = [d[k][:i] for k, grp in g for i, x in enumerate(grp, start=1)]
    # 207 ms ± 10.3 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
    

    enter image description here