I'm trying to use the glmmLasso pacakage and am able to run a model and get a summary output and extract the fitted values, but I'm wondering if/how I can make predictions with it?
Am I missing a step?
For example:
library(glmmLasso)
library(tidyverse)
mt_tbl <- mtcars %>% as_tibble() %>%
mutate(cyl = factor(cyl))
glm_cars <- glmmLasso(mpg ~ hp + drat + wt,
data=mt_tbl,
rnd = list(cyl=~1),
family = gaussian(link = "identity"),
lambda = .9,
switch.NR = TRUE,
final.re = TRUE)
# These work
summary(glm_cars)
glm_cars$fitted.values
# I want this to work
predict(glm_cars, mt_tbl)
If you do not convert mtcars
to tibble
, the code works fine with data.frame
like
library(glmmLasso)
library(tidyverse)
#Convert cyl to factor
mtcars$cyl <- factor(mtcars$cyl)
#Run the model using 'data.frame'
glm_cars <- glmmLasso(mpg ~ hp + drat + wt,
data=mtcars,
rnd = list(cyl=~1),
family = gaussian(link = "identity"),
lambda = .9,
switch.NR = TRUE,
final.re = TRUE)
# These work
summary(glm_cars)
glm_cars$fitted.values
# Predict using 'data.frame' works
predict(glm_cars, mtcars)