I have a large dataset made of multiple irregular timeseries with a specific date column for each series. I want to convert this dataset into a dataframe with a unique date column or into a zoo object.
I tried read_xls(), read.zoo(). I tried to reshape with pivot_longer(). I searched on the web but I have not found any solution yet.
date1 Var1 date2 Var2 date3 Var3
2023-01-13 100.1 2023-01-11 99.7 2022-11-24 102.3
2023-01-16 104.5 2023-01-12 NA 2022-11-25 99.9
2023-01-17 101.6 2023-01-13 99.9 2022-11-28 99.3
2023-01-18 101.8 2023-01-16 99.1 2022-11-29 NA
2023-01-19 NA 2023-01-17 99.5 2022-11-30 NA
Using the data shown reproducibly in the Note at the end, assume that what is wanted is a zoo object with a separate column for each non-date column.
First create a grouping vector g
which looks like c("Var1", "Var1", "Var2", "Var2", "Var3", "Var3")
and then convert DF
to a list and split it by g
giving s
. Finally convert each component of s
to a zoo object and merge them using cbind
. (If a data frame is wanted use fortify.zoo
on the result.)
library(zoo)
g <- rep(names(DF)[sapply(DF, is.numeric)], each = 2)
s <- split(as.list(DF), g)
do.call("cbind", lapply(s, function(x) read.zoo(as.data.frame(x))))
giving:
Var1 Var2 Var3
2022-11-24 NA NA 102.3
2022-11-25 NA NA 99.9
2022-11-28 NA NA 99.3
2022-11-29 NA NA NA
2022-11-30 NA NA NA
2023-01-11 NA 99.7 NA
2023-01-12 NA NA NA
2023-01-13 100.1 99.9 NA
2023-01-16 104.5 99.1 NA
2023-01-17 101.6 99.5 NA
2023-01-18 101.8 NA NA
2023-01-19 NA NA NA
This could be represented as a pipeline like this:
g <- rep(names(DF)[sapply(DF, is.numeric)], each = 2)
DF |>
as.list() |>
split(g) |>
lapply(function(x) read.zoo(as.data.frame(x))) |>
do.call(what = "cbind")
or
DF |>
as.list() |>
(\(x) split(x, rep(names(x)[sapply(x, is.numeric)], each = 2)))() |>
lapply(\(x) read.zoo(as.data.frame(x))) |>
do.call(what = "cbind")
Lines <- "date1 Var1 date2 Var2 date3 Var3
2023-01-13 100.1 2023-01-11 99.7 2022-11-24 102.3
2023-01-16 104.5 2023-01-12 NA 2022-11-25 99.9
2023-01-17 101.6 2023-01-13 99.9 2022-11-28 99.3
2023-01-18 101.8 2023-01-16 99.1 2022-11-29 NA
2023-01-19 NA 2023-01-17 99.5 2022-11-30 NA"
DF <- read.table(text = Lines, header = TRUE)