What's Python's equivalent to R's layout()
function which can create a plotting grid of any shape?
Consider the following 3 figures made by layout()
:
set.seed(123)
layout(t(matrix(c(
1, 1, 2, 2, 3, 3,
4, 5, 5, 6, 6, 7
), ncol = 2)), widths = rep(1, 6), heights = rep(1, 2))
par(mar = c(4, 5, 1, 1), family = "serif")
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 1
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 2
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 3
plot.new() # 4
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 5
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 6
set.seed(123)
layout(t(matrix(c(
1, 1, 2, 2, 3, 3,
4, 4, 4, 5, 5, 5
), ncol = 2)), widths = rep(1, 6), heights = rep(1, 2))
par(mar = c(4, 5, 1, 1), family = "serif")
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 1
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 2
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 3
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 4
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 5
set.seed(123)
layout(t(matrix(c(
1, 1, 2, 2, 3, 3,
4, 4, 4, 4, 5, 5
), ncol = 2)), widths = rep(1, 6), heights = rep(1, 2))
par(mar = c(4, 5, 1, 1), family = "serif")
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 1
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 2
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 3
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 4
plot(x = runif(30), y = runif(30), cex.axis = 1.5,
bty = "L", xlab = "", ylab = "", las = 1) # 5
In Python, how to make figures of constituent plots with exactly the same layout as the above?
The simplest counterpart is plt.subplot_mosaic
, which is a convenience wrapper for making custom gridspecs:
.
represents empty spaceSo your 3 examples correspond to these 3 mosaics:
fig, axs = plt.subplot_mosaic('''
aabbcc
.ddee.
''')
fig, axs = plt.subplot_mosaic('''
aabbcc
dddeee
''')
fig, axs = plt.subplot_mosaic('''
abc
dde
''')
Note that plt.subplot_mosaic
returns a dictionary of axes (not an array like plt.subplots
):
import matplotlib.pyplot as plt
import numpy as np
mosaic = '''
aabbcc
.ddee.
'''
fig, axs = plt.subplot_mosaic(mosaic, figsize=(7, 4))
print(axs)
# {'a': <Axes: label='a'>,
# 'b': <Axes: label='b'>,
# 'c': <Axes: label='c'>,
# 'd': <Axes: label='d'>,
# 'e': <Axes: label='e'>}
for label, ax in axs.items():
ax.scatter(np.random.random(30), np.random.random(30), s=10)
ax.set_title(label)
plt.tight_layout()
plt.show()