I am new to TensorFlow and i'm trying to implement simple collaborative filtering in v2. I have no trouble training on the whole train set at once, but I have problems when I try to batch train. Specifically when calculating grads
the output gradients are [None, None]
. The colab file with the full attempt can be found here.
with tf.GradientTape() as tape:
tape.watch(user_embedding)
tape.watch(item_embedding)
## Compute the predicted ratings
predicted_ratings = tf.reduce_sum(user_batch * item_batch, axis=1)
## Compute loss
true_ratings = tf.cast(train_batch_st.values, tf.float32)
loss = tf.losses.mean_squared_error(true_ratings, predicted_ratings) # batch loss
# Cumulative epoch loss (across all batches)
epoch_loss += loss
## Compute gradients of loss with respect to user and item embeddings
grads = tape.gradient(loss, [user_embedding, item_embedding])
print(grads) # grads None, None thus causing error below
# Apply gradients
optimizer.apply_gradients(zip(grads, [user_embedding, item_embedding]))
Thanks for any help!
This works for me: just do the tf.nn.embedding_lookup
within the gradient tape.
with tf.GradientTape() as tape:
user_batch = tf.nn.embedding_lookup(user_embedding, user_ids) # shape = batch_size x embedding_dims
item_batch = tf.nn.embedding_lookup(item_embedding, item_ids) # shape = batch_size x embedding_dims
## Compute the predicted ratings
true_ratings = tf.cast(train_batch_st.values, tf.float32)
predicted_ratings = tf.reduce_sum(user_batch * item_batch, axis=1)
## Compute loss
# Using MSE here
loss = tf.losses.mean_squared_error(true_ratings, predicted_ratings) # batch loss
# Cumulative epoch loss (across all batches)
epoch_loss += loss
## Compute gradients of loss with respect to user and item embeddings
grads = tape.gradient(loss, [user_embedding, item_embedding])
# Apply gradients (update user and item embeddings)
optimizer.apply_gradients(zip(grads, [user_embedding, item_embedding]))