pythonopencvimage-processingbounding-box

Open CV Select Bounding Box based on Area


I am trying to monitor the positional change of a rotating and moving sample head by comparing still camera images before and after a movement command is given. My plan is to do this using Open CV and bounding boxes.

enter image description here

I wrote some code to do this but am struggling to select the specific bounding box I want. There is positional and potential lighting change so I'm not sure I can just mess with the threshold setting of the image to only show the sample. As the sample size will not change, I was planning on filtering through my array of bounding boxes by area to display and compare only the one that covers the sample.

I tried solving for an array of contour areas using the cv2.contourArea() function but kept getting an error "OpenCV(4.7.0) :-1: error: (-5:Bad argument) in function 'contourArea'", > - contour is not a numerical tuple. It seems like I am not going about this correctly.

Any help would be much appreciated. Thanks. Code pasted below.

import numpy as np
import matplotlib.pyplot as plt
import cv2

# read the image
img = cv2.imread("Test_IMG_Rev1\IMG_3_ROT100.jpg")
# Convert to Grayscale and RGB
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# Apply Thresholding on the grayscale image
ret,thresh = cv2.threshold(img_gray,127,255,0)

# Plot Images
fig = plt.figure(figsize=(20,20))
ax = plt.subplot(1, 2, 1)
plt.imshow(img_rgb)
ax.set_title("Original Image")
ax = plt.subplot(1, 2, 2)
plt.imshow(thresh)
ax.set_title("Threshold Image")
#
plt.show()

# Get contours (Rotated)
result1 = img.copy()
contours1 = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours1 = contours1[0] if len(contours1) == 2 else contours1[1]
for cntr1 in contours1:
    rect = cv2.minAreaRect(cntr1)
    box = cv2.boxPoints(rect)
    box = np.int0(box)
    G = cv2.drawContours(result1,[box],0,(0,0,255),2)
#
plt.figure(figsize=(10,10))
img_result1 = cv2.cvtColor(result1, cv2.COLOR_BGR2RGB)
plt.imshow(img_result1)


Solution

  • I got it to work, thanks for the help. Full code pasted Below. enter image description here

    import numpy as np
    import matplotlib.pyplot as plt
    import cv2
    import math as eq
    from mpl_toolkits.axes_grid1 import ImageGrid
    # read the image(s)
    img = cv2.imread("Test_IMG_Rev1\IMG_1.jpg")
    img_C = cv2.imread("Test_IMG_Rev1\IMG_3_ROT100.jpg")
    #
    res = img.shape
    res_x = res[1] # pixel per square inch
    res_y = res[0] # pixel per square inch
    #
    conv = (1/25400) # convert PPI to um
    # Convert to Grayscale and RGB
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    #
    img_gray_C = cv2.cvtColor(img_C, cv2.COLOR_BGR2GRAY)
    img_rgb_C = cv2.cvtColor(img_C, cv2.COLOR_BGR2RGB)
    
    # Apply Thresholding on the grayscale image
    ret,thresh = cv2.threshold(img_gray,127,255,0)
    ret_C,thresh_C = cv2.threshold(img_gray_C,127,255,0)
    # Get contours (Rotated), Image 1
    box_Ax = []
    #
    result_A = img.copy()
    contours_A = cv2.findContours(thresh, cv2.RETR_EXTERNAL, 
    cv2.CHAIN_APPROX_SIMPLE)
    contours_A = contours_A[0] if len(contours_A) == 2 else contours_A[1]
    for cntr_A in contours_A:
        if cv2.contourArea(cntr_A) > 26000 and cv2.contourArea(cntr_A) < 30000:
            rect_A = cv2.minAreaRect(cntr_A)
            box_A = cv2.boxPoints(rect_A)
            box_A = np.int0(box_A)
            box_Ax.append(box_A)
            G = cv2.drawContours(result_A,[box_A],0,(0,0,255),5)
    #
    plt.figure(figsize=(10,10))
    img_result_A = cv2.cvtColor(result_A, cv2.COLOR_BGR2RGB)
    plt.imshow(img_result_A)
    #
    # Get contours (Rotated), Image 2 (Comparison Image)
    box_Bx = []
    #
    result_B = img_C.copy()
    contours_B = cv2.findContours(thresh_C, cv2.RETR_EXTERNAL, 
    cv2.CHAIN_APPROX_SIMPLE)
    contours_B = contours_B[0] if len(contours_B) == 2 else contours_B[1]
    for cntr_B in contours_B:
        if cv2.contourArea(cntr_B) > 26000 and cv2.contourArea(cntr_B) < 30000:
            rect_B = cv2.minAreaRect(cntr_B)
            box_B = cv2.boxPoints(rect_B)
            box_B = np.int0(box_B)
            box_Bx.append(box_B)
            G = cv2.drawContours(result_B,[box_B],0,(0,0,255),5)
    #
    plt.figure(figsize=(10,10))
    img_result_B = cv2.cvtColor(result_B, cv2.COLOR_BGR2RGB)
    plt.imshow(img_result_B)
    

    Here is the image comparison code as well for refrence.

    # Calculate Rotation and Position Offset
    Img_A_index = np.ravel(box_Ax)
    Img_B_index = np.ravel(box_Bx)
    #
    CoordX_A = ((Img_A_index[0])+(Img_A_index[4]))/2
    CoordY_A = ((Img_A_index[1])+(Img_A_index[5]))/2
    #
    CoordX_B = ((Img_B_index[0])+(Img_B_index[4]))/2
    CoordY_B = ((Img_B_index[1])+(Img_B_index[5]))/2
    #
    X_offset = (CoordX_A-CoordX_B)
    Y_offset = (CoordY_A-CoordY_B)
    #
    Angle_A = (eq.atan(abs((Img_A_index[6])-(Img_A_index[0]))/abs((Img_A_index[7])- 
    (Img_A_index[1]))))
    Angle_B = (eq.atan(abs((Img_B_index[6])-(Img_B_index[0]))/abs((Img_B_index[7])- 
    (Img_B_index[1]))))
    Angle_offset = (Angle_A-Angle_B)