I am currently struggling with recursiving partition and bagging/bootstrapping of some data. As the data is confidential I have provided a reproducible example using the "GBSG2" data. In essense I am currently trying to reproduce an article recently published in Journal of Clinical Oncology (https://ascopubs.org/doi/abs/10.1200/JCO.22.02222) with my own data on an identical patient population.
I have attached prints of their method section and a supplemental tabel which is essentially what I hope to end up with
My problem can be boiled down to
Here is a some dummy code and what I've done thus far
library(partykit)
data("GBSG2", package = "TH.data")
#Dataframe
df <- GBSG2
#Ctree object
stree <- ctree(Surv(time,cens)~., data=df, control= ctree_control(minsplit = 50, alpha = 0.1, multiway = T))
#The following part I hope could be done more efficiently
n <- predict(stree, type="node")
nd <- factor(predict(stree, type="node"))
df$node <- n
fit1 <- survfit(Surv(time,cens)~nd, data=df)
summary(fit1, times=365*3)
#Manual input to each node by reading the transcript
df$grp <- ifelse(df$node==3, "A",NA)
df$grp <- ifelse(df$node==4, "A", df$grp)
df$grp <- ifelse(df$node==7, "C", df$grp)
df$grp <- ifelse(df$node==8, "D", df$grp)
df$grp <- ifelse(df$node==9, "B", df$grp)
I believe the above needs to be fixed before my bootstrap can be done in order to get a result which matches the attached supplemental table (I'd like to do it 1000 times, but I'm doing 10 until it works).
#Bagging
df_bag <- df %>%
select(-"node", -"grp")
cf <- cforest(Surv(time,cens)~.,data=df_bag, ntree=10, mtry = Inf)
Thank you very much,
Tobias Berg
I've managed to find solutions for my questions
library(partykit)
library(survival)
data("GBSG2", package = "TH.data")
#Data
df <- GBSG2
#Ctree object
stree <- ctree(Surv(time,cens)~., data=df, control= ctree_control(minsplit = 50, alpha = 0.1, multiway = T))
#Prediciton for Recursive partitioning analysis
n <- predict(stree, type="node")
node <- factor(predict(stree, type="node"))
df$node <- n
fit1 <- survfit(Surv(time,event)~node, data=df)
res <- summary(fit1, times=365*3)
cols <- lapply(c(6, 10), function(x) res[x])
tbl <- do.call(data.frame, cols)
tbl$strata <- as.integer(gsub("[^0-9]", "", tbl$strata))
tbl <- tbl %>%
rename(node=strata)
df <- df %>%
left_join(., tbl, by="node") %>%
mutate(grp=ifelse(surv>0.699999, "A", NA)) %>%
mutate(grp=ifelse(surv<0.70 & surv>0.49999, "B", grp)) %>%
mutate(grp=ifelse(surv<0.50 & surv>0.24999, "C", grp)) %>%
mutate(grp=ifelse(surv<0.25, "D", grp))
#Bootstrapping with 10 iterations
#Function which essentially does the above prediction and returns for each row the corresponding group
classify_abcd = function (df_bag_in, pred_vector) {
n <- pred_vector
node <- factor(pred_vector)
df_bag_in$node <- n
fit1 <- survfit(Surv(time,event)~node, data=df_bag_in)
res <- summary(fit1, times=365*3,extend = TRUE)
cols <- lapply(c(6, 10), function(x) res[x])
tbl <- do.call(data.frame, cols)
tbl$strata <- as.integer(gsub("[^0-9]", "", tbl$strata))
tbl <- tbl %>%
rename(node=strata)
df_bag_in <- df_bag_in %>%
left_join(., tbl, by="node") %>%
mutate(grp=ifelse(surv>0.699999, "A", NA)) %>%
mutate(grp=ifelse(surv<0.70 & surv>0.49999, "B", grp)) %>%
mutate(grp=ifelse(surv<0.50 & surv>0.24999, "C", grp)) %>%
mutate(grp=ifelse(surv<0.25, "D", grp))
return(df_bag_in[c('grp')])
}
#Bootstrapping 10 iterations. End result is the data frame with each group assignment per iteration
cf <- cforest(Surv(time,event)~.,data=df, ntree=10, mtry = Inf, trace=T)
all_list_runs <- predict(cf, type="node")
map_id_to_classes = data.frame()
for(pred_vector in all_list_runs) {
per_id_class = classify_abcd(df_rpa, pred_vector)
print(per_id_class)
if (length(map_id_to_classes) == 0) {
map_id_to_classes = per_id_class
} else {
map_id_to_classes = cbind(map_id_to_classes, per_id_class$grp)
}
}