c++rboostrcppmath-functions

Why is Boost implementation 5-10x slower than R's


I am building an app that frequently computes the regularized incomplete beta function. The app is written in C++ and calls R::pbeta(). When I tried to multithread the app, some warning messages from R::pbeta() smashed the stack.

So I turned to boost::math::ibeta(). Everything worked fine until I measured the speed. The following C++ file whyIsBoostSlower.cpp implements the regularized incomplete beta function using either R::pbeta() or boost::math::ibeta().

// [[Rcpp::plugins(cpp17)]]
#include <boost/math/special_functions/beta.hpp>
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>
using namespace Rcpp;


// Compute the regularized incomplete Beta function.
// [[Rcpp::export]]
NumericVector RIBF(NumericVector q, NumericVector a, NumericVector b, 
                   bool useboost = false)
{
  NumericVector rst(q.size());
  for (int i = 0, iend = q.size(); i < iend; ++i)
  {
    if (useboost) rst[i] = boost::math::ibeta( a[i], b[i], q[i] );
    else          rst[i] = R::pbeta( q[i], a[i], b[i], 1, 0 );
  }
  return rst;
}

In R, we measure the speed of calling the function 300000 times on random numbers:

Rcpp::sourceCpp("whyIsBoostSlower.cpp")


set.seed(123)
N = 300000L
q = runif(N) # Generate quantiles.
a = runif(N, 0, 10) # Generate a in (0, 10)
b = runif(N, 0, 10) # Generate b in (0, 10)


# Use R's pbeta(). This function calls a C wrapper of toms708.c:
#   https://svn.r-project.org/R/trunk/src/nmath/toms708.c
system.time({ Rrst = RIBF(q, a, b, useboost = F) })
# Windows 10 (seconds):
# user  system elapsed 
# 0.11    0.00    0.11 

# RedHat Linux:
# user  system elapsed 
# 0.097   0.000   0.097 


# Use Boost's implementation, which also depends on TOMS 708 by their claim:
#  https://www.boost.org/doc/libs/1_41_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_beta/ibeta_function.html
system.time({ boostRst = RIBF(q, a, b, useboost = T) })
# Windows 10:
# user  system elapsed 
# 0.52    0.00    0.52 

# RedHat Linux:
# user  system elapsed 
# 0.988   0.001   0.993 


range(Rrst - boostRst)
# -1.221245e-15  1.165734e-15

To reproduce the example, one needs to install R and package Rcpp. On Windows, one also needs to install Rtools which contains a GCC distribution. The optimization flag is default to -O2.

Both R::pbeta() and boost::math::ibeta() are based on ACM TOMS 708, yet boost::math::ibeta() is 5x slower on Windows and 10x slower on Linux.

I think it might have something to do with setting the Policy argument in boost::math::ibeta(), but how?

Thank you!

FYI, R::pbeta() is defined in R-4.2.3/src/nmath/pbeta.c. R::pbeta() calls bratio() which is defined in R-4.2.3/src/nmath/toms708.c, namely https://svn.r-project.org/R/trunk/src/nmath/toms708.c . Code inside is C translation of TOMS 708 Fortran code. The translation is done by R's core team.

In contrast, Boost states "This implementation is closely based upon "Algorithm 708; Significant digit computation of the incomplete beta function ratios", DiDonato and Morris, ACM, 1992." on boost::math::ibeta()


Solution

  • As there are Beta, incomplete Beta as well as a Beta distribution (which you hit with R::pbeta()) I want to ensure we compare apples with apples.

    So a modified version of your code, here with two distinct functions for simplicity---as well as a comparison the GSL---and formal benchmark call:

    Code

    // [[Rcpp::depends(BH)]]
    #include <boost/math/special_functions/beta.hpp>
    
    // this also ensure linking with the GSL
    // [[Rcpp::depends(RcppGSL)]]
    #include <gsl/gsl_sf_gamma.h>
    
    #include <Rcpp.h>
    using namespace Rcpp;
    
    
    // [[Rcpp::export]]
    NumericVector bfR(NumericVector a, NumericVector b) {
        int n = a.size();
        NumericVector rst(n);
        for (int i = 0; i<n; i++) {
            rst[i] = R::beta(a[i], b[i]);
        }
        return rst;
    }
    
    // [[Rcpp::export]]
    NumericVector bfB(NumericVector a, NumericVector b) {
        int n = a.size();
        NumericVector rst(n);
        for (int i = 0; i<n; i++) {
            rst[i] = boost::math::beta( a[i], b[i] );
        }
        return rst;
    }
    
    // [[Rcpp::export]]
    NumericVector bfG(NumericVector a, NumericVector b) {
        int n = a.size();
        NumericVector rst(n);
        for (int i = 0; i<n; i++) {
            rst[i] = gsl_sf_beta( a[i], b[i] );
        }
        return rst;
    }
    
    
    /*** R
    
    set.seed(123)
    N <- 300000L
    a <- runif(N, 0, 10) # Generate a in (0, 10)
    b <- runif(N, 0, 10) # Generate b in (0, 10)
    summary(bfR(a,b) - bfB(a,b))
    summary(bfR(a,b) - bfG(a,b))
    microbenchmark::microbenchmark(R = bfR(a, b), Boost = bfB(a, b), GSL = bfG(a, b), times=10)
    
    */
    

    Output

    When we Rcpp::sourceCpp() the 'marked' R code section also gets executed:

    > Rcpp::sourceCpp("answer.cpp")
    
    > set.seed(123)
    
    > N <- 300000L
    
    > a <- runif(N, 0, 10) # Generate a in (0, 10)
    
    > b <- runif(N, 0, 10) # Generate b in (0, 10)
    
    > summary(bfR(a,b) - bfB(a,b))
         Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
    -3.64e-12  0.00e+00  0.00e+00 -5.00e-17  0.00e+00  1.36e-12 
    
    > summary(bfR(a,b) - bfG(a,b))
         Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
    -1.18e-11 -4.00e-17  0.00e+00  2.10e-16  0.00e+00  1.09e-11 
    
    > microbenchmark::microbenchmark(R = bfR(a, b), Boost = bfB(a, b), GSL = bfG(a, b), times=10)
    Unit: milliseconds
      expr      min       lq     mean   median       uq      max neval cld
         R  44.9314  45.2773  46.9782  46.1237  49.0056  50.6273    10 a  
     Boost 166.0146 167.2552 171.0441 169.5741 175.0108 180.6520    10  b 
       GSL  58.3259  58.5101  61.0364  59.6556  62.4862  67.5316    10   c
    > 
    

    At this point I can only guess that Boost either does some extra hoops, or suffers some costs from abstraction as it looses to both R and the GSL. (And I note that on its documentation page the results are compared (for accurracy) to the GNU GSL as well as to R: https://www.boost.org/doc/libs/1_82_0/libs/math/doc/html/math_toolkit/sf_beta/beta_function.html)