I have a bunch of predictors that could be useful for a diagnosis. Since I have more than 30 predictors, I selected only the predictors that are more useful in this diagnosis, using the AUC measure (area under the ROC curve).
library(pROC)
library(dplyr)
library(purrr)
#Sorted my variables by AUC in table.AUC (one col with AUCs, one col with variable names)
# Then extracted a list of all variables with an AUC>=0.7
list.predictors=table.auc %>% filter(AUC>=0.7) %>% dplyr::select(Variable) %>% unlist()
# Then did a purrr::map() to calculate the bests thresholds, senibility, specificity and positive and negative predictive values
map(list.predictors, .f=~{
threshold=coords(roc(data$Illness,data[[.x]], levels=c("Healthy","Sick")), "best", ret = "threshold") %>% unlist()
c2=data
c2$NM=ifelse(data[[.x]]>=threshold,"1","0")
TP=c2 %>% filter(NM!="0" & Illness=="Sick") %>% nrow()
TN= c2 %>% filter(NM=="0" & Illness=="Healthy") %>% nrow()
FP=c2 %>% filter(NM!="0" & Illness=="Healthy") %>% nrow()
FN= c2 %>% filter(NM=="0" & Illness=="Sick") %>% nrow()
tribble(~"name",~"threshold",~"Sen",~"Spe",~"PPV",~"PNV",
.x,threshold, TP/(TP+FN), TN/(TN+FP), TP/(TP+FP), TN/(TN+FN)
) %>%
mutate(across((Sen:PNV),~round(.x,2)),
threshold=round(threshold,3)) %>% return()
}) %>% bind_rows()
However, I have some weird sensibility and specificity for one predictor : Sen = 18%, Spe = 41%. Looking at the ROC curve, I think my function has failed to find the best threshold (and found one that doesn't even exist ??) .
Looking at the coords() documentation, it seems that the threshold is calculated by maxing (Sen+Spe). However, here, it is clearely possible to find a threshold that have a higher Sen+Spe value.
Is the error coming from my code ? (doing coords(roc(data$Illness,data$the_predictor, levels=c("Healthy","Sick")), "best", ret = "threshold") %>% unlist()
just gives the same threshold. Is it coming from the pROC function ?
Help me, I am so lost here.
data=structure(list(Predictor = c(-30.0265168079189, 1.15099363860717,
-11.9804372907826, -5.77111036023964, -2.12543529096544, 3.92087977078597,
5.34247848261018, 4.22335287554391, -23.6137844687066, -19.9373894314097,
-7.66163269551192, 9.13278170787256, -1.36786740246491, -2.72758047450363,
-12.1955983263269, 4.12642888543807, 0.163977606901045, 1.46547604262282,
-1.8412138361035, -6.14477150770652, -3.17570617995096, -30.064951386853,
10.9975933111011, 4.69525214654113, 7.17071677098559, -42.7958812479347,
-22.0530194817619, 5.22959301386168, -5.37225791749525, -8.41992810521969,
0.214693153960777, -10.2699595330821, 7.5188942409622, -8.35948733431006,
-28.3236974772852, -0.334108822977305, 10.3570377885479, -6.21627576016198,
-1.34577632302221, -0.704958574099198, -8.21298595801565, -0.673991917300366,
10.1477239063002, -13.3154432636137, -24.7929589691277, -13.7662638672144,
-11.8388358393301, 1.2811315099285, -16.6351572937165, -11.2898600124526,
-22.8066837752388, 3.56811422380944, -23.3577893771017, -14.1165843206214,
-3.60022726353809, -3.11503373374385, -12.2597492695888, 7.31226134848711,
-11.5833482372835, -16.7535225022961, -8.56422928031759, -47.9699360179454,
-19.7539978196463, -26.3666055391003, -17.2614678085344, 13.2702046763866,
-13.2264594680634, 15.7449331695833, -5.50032293388125, 2.81599579215209,
1.92271901789842, -1.99266757116988, -27.2703581251132, 0.476318001224534,
-6.65722119385071, 2.35294755630814, 13.2977149882188, -15.6037631636617,
1.38135215321582, -9.71125135113497, -4.11971899794967, 5.21192589771364,
5.63060382748609, 3.93730115204109, 12.9318052438389, 6.16873004521188,
0.987650782375663, -11.352515305607, 13.4704068306721, -8.43764175284198,
18.5651453322091, 2.45966987595847, -42.9176544778171, -3.89773417236148,
-28.3070154341685, -13.6189396001791, -8.10091523989799, 2.45341660282897,
3.57427638074422, 16.1254084424853, -13.234491473745, -37.5823778107753,
3.89815090155948, 11.4130217096843, -26.9867338207, -21.9465772218131,
7.34257329115229, -11.3782968157392, -34.7142009728594, -49.8201162965836,
9.29909876231373, -10.0850944178935, 11.6016303844531, 5.23411199811675,
11.7946167683302, 3.28158141564784, 2.03385869625709, -1.89888171264814,
-23.3807367058501, -4.08156864378285, 9.00363191604415, 12.8526886439116,
-13.0772932176236, -8.00976153286771, 8.65199795385856, 15.0607427725054,
14.1375633988393, -8.66285501996315, 10.6594655613105, -17.5706905139599,
6.12042615000835, -3.31329113354379, -3.99151135257908, 8.04726385642244,
-0.56725238509163, -9.36165609862254, -4.62609609004956, -54.3425894866824,
-31.5916887347727, -22.8418309700193, -5.8349028529916, -24.2643112312585,
10.0928208337933, -10.663258246763, 0.154714176468552, 1.94161020180308,
1.23173520914207, -11.5359195732191, 10.4662441932512, -1.15329871483222,
2.48304873375732, 11.1247749589697, 13.600816862598, 5.4048677111595,
7.75142783090626, 12.407508070537, 14.2936521098022, 8.57492908453424,
7.78937753060301, 15.5758817729099, 12.9689634444848, 19.7716027797074,
17.3722434464835, 25.8398368056633, 22.9286256713902, 12.4332591080305,
20.1646775468313, 13.6359691315215, 22.4075156394212, 2.52052660698105,
-16.1294988287829, 24.2580803169934, 6.53302505803349, 28.0007397454365,
12.5997533567436, 19.8231609146357, 20.4758235394322, -3.14132866132124,
15.3652243575294, 5.51333807966991, 12.6701530511479, 7.76875005452657,
9.50414582122118, 7.18440942260985, 17.0577133339618, 1.75973853154878,
19.3991204516457, 17.2086372124398, 11.4946377474413, 18.1208643720225,
13.4371964205874, -1.41932411310972, -0.217642491330989, 0.559828427316018,
14.9513204550895, 8.40789113945641, 7.32690822343274, -10.6306122848244,
8.78982973978855, 19.9236377854904, -16.146128022031, -4.91319750465569,
1.94096133981224, 19.1978399847426, 5.68816798940584, 16.0286843888299,
10.8532049397931, 14.9332042247407, 7.89131242660244, 4.84817793483408,
-23.5709741092812, -5.0750006627721, 9.82990315423877, 13.445883799078,
-16.6078061062201, 8.09109746282265, 4.03027064373712, 7.04329554573276,
-21.7969169325793, 5.17566711827446, 17.7920853961723, 19.5637542942757,
-2.64115652660286, 15.8666090101656, 19.8301694557142, 6.12840423007928,
10.6956110325132, 20.6264711334891, 13.7039419874073, -5.48902063664391,
-13.5307133212758, -3.57547635643989, 8.28126733549754, -28.1686872403507,
21.1407803859056, -1.65377737760872, 0.831092132680901, 16.9496509311116,
-9.18907250852743, 14.8757097896787, 12.2295286749314), Illness = structure(c(1L,
2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L
), levels = c("Healthy", "Sick"), class = "factor")), row.names = c(NA,
-241L), class = c("data.table", "data.frame"))
list.predictors=list("Predictor")
summary(data)
map(list.predictors, .f=~{
threshold=coords(roc(data$Illness,data[[.x]], levels=c("Healthy","Sick")), "best", ret = "threshold") %>% unlist()
c2=data
c2$NM=ifelse(data[[.x]]>=threshold,"1","0")
TP=c2 %>% filter(NM!="0" & Illness=="Sick") %>% nrow()
TN= c2 %>% filter(NM=="0" & Illness=="Healthy") %>% nrow()
FP=c2 %>% filter(NM!="0" & Illness=="Healthy") %>% nrow()
FN= c2 %>% filter(NM=="0" & Illness=="Sick") %>% nrow()
tribble(~"name",~"threshold",~"Sen",~"Spe",~"PPV",~"PNV",
.x,threshold, TP/(TP+FN), TN/(TN+FP), TP/(TP+FP), TN/(TN+FN)
) %>%
mutate(across((Sen:PNV),~round(.x,2)),
threshold=round(threshold,3)) %>% return()
}) %>% bind_rows()
I believe pROC gives the correct optimal threshold. The problem lies in your code which calculates the parameters incorrectly.
Notice the following output line when running the code:
Setting direction: controls > cases
This indicates that Predictor
takes lower values in Sick
cases. As a consequence, you are thresholding the data incorrectly. If you don't know the direction your predictor goes a priori, you should replace:
c2$NM=ifelse(data[[.x]]>=threshold,"1","0")
with:
c2$NM=ifelse(data[[.x]]<threshold,"1","0")
which produces the correct output:
Setting direction: controls > cases
# A tibble: 1 × 6
name threshold Sen Spe PPV PNV
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Predictor 1.33 0.82 0.59 0.31 0.94
In addition you should be able to get the results you want much more easily and without the need to compute the performance values yourself with a pipeline like this:
map(list.predictors, .f = ~{
roc(data$Illness, data[[.x]], levels = c("Healthy","Sick")) %>%
coords("best", ret = c("threshold", "sensitivity", "specificity", "ppv", "npv")) %>%
as_tibble() %>%
mutate(name = .x, .before = "threshold",
across((sensitivity:npv), ~round(.x, 2)),
threshold = round(threshold, 3))
}) %>%
bind_rows()
This pipeline produces the same output as yours, using the performance values computed by the coords function.