I am currently using the command-line command to train my yolov5 model:
python train.py --img 512 --batch 14 --epochs 5000 --data neurons.yaml --weights yolov5s.pt --cache ram
However, I want to trigger the training process using the train()
method in the train.py
file. Here is the code I am using to run it as a subprocess:
subprocess.run(['python3.10',
'yolov5/train.py',
'--img',
'weights/last_yolov5s_custom.pt',
'--img',
'512',
'--batch',
'14',
'--epochs',
'2',
'--data',
'neurons.yaml',
'--weights',
'yolov5s.pt',
'--cache',
'ram'])
I would like to know how to pass all the command-line parameters I am currently using to the train() function in the train.py file. The train() function expects a parameter called opt, which is a custom argparse object as shown in the Extras.
Here is the train() function definition in the train.py file:
def train(hyp, opt, device, callbacks):
# Code implementation
The opt parameter is obtained from the parse_opt() function, which uses argparse for parsing the command-line arguments.
How can I modify my code to trigger the training process using the train() method and pass the necessary command-line parameters?
opt object originated from the main
method;
if __name__ == '__main__':
opt = parse_opt()
main(opt)
Here is the parse_opt()
method which is using argparse
parser;
def parse_opt(known=False):
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
parser.add_argument('--noplots', action='store_true', help='save no plot files')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
# Logger arguments
parser.add_argument('--entity', default=None, help='Entity')
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')
return parser.parse_known_args()[0] if known else parser.parse_args()
argparse.parse_args
returns an argparse.Namespace
object, which is just a simple "bag of attributes" object. Per the docs:
This class is deliberately simple, just an object subclass with a readable string representation
You can pass any object that has attributes set for each of the CLI arguments for opt
. For example, any of
opt = object()
opt.img = 512
# ...
or
import argpase
opt = argparse.Namespace(
img=512,
# ...
)
or
import types
opt = types.SimpleNamespace(
img=512,
# ...
)
would do the trick. Be mindful that many of the CLI arguments have default values that get populated into opt
, so you will likely need to specify more arguments than what you've provided when using the CLI interface.
Alternatively, you could create a modified version of parse_opt
that directly interprets you're existing CLI arguments into the same namespace object that gets created when running train.py
:
def parse_opt_modified(raw_args: list[str]) -> argparse.Namespace:
parser = argparse.ArgumentParser()
# ....
return parser.parg_args(raw_args)
then in your code, call it as
opt = parse_opt_modified(
[
'--img',
'weights/last_yolov5s_custom.pt',
'--img',
'512',
'--batch',
'14',
'--epochs',
'2',
'--data',
'neurons.yaml',
'--weights',
'yolov5s.pt',
'--cache',
'ram,
]
)