vectorazure-cognitive-searchsemantic-search

Azure cognitive search- create an Indexer with skillsets to convert pdf file content to vector data and map to Index field ContentVector


I was trying to achieve semantic vector search on my own data. The PDF file will be uploaded into the blob storage, Indexer with skillsets pick up the file content from datasource and map to the index fields: Id, Content and Contentvector. I am able to create a storage source and index with fields Id, Content and Contentvector. Also managed to upload a file. But struggling a bit to create an Indexer with skillsets to convert file content to vector format and map to an Index field "Contentvector".

Below code I tried where first I am creating an Index, 2nd: Define datasource and creating it. Then creating a skillsets and lastly using the created skillsets, creating an Indexer.

  public async Task ConfigureSearchIndexer()
        {
            //"my-semantic-config";
            SearchIndexClient indexClient = new SearchIndexClient(ServiceEndpoint, new AzureKeyCredential(SearchAdminApiKey));
            SearchIndexerClient indexerClient = new SearchIndexerClient(ServiceEndpoint, new AzureKeyCredential(SearchAdminApiKey));

            try
            {
                //This code section is to create Index
                var SampleIndex = GetSampleIndex(IndexName);
                Console.WriteLine("Creating index: " + IndexName);
                indexClient.CreateOrUpdateIndex(SampleIndex);
                Console.WriteLine("Created the index: " + IndexName);


                // Define the data source
                Console.WriteLine("Creating or Updating dataStorage: " + DataSourceName);
            SearchIndexerDataSourceConnection dataSources = new SearchIndexerDataSourceConnection(
                name: DataSourceName,
                type: "azureblob",
                connectionString: BlobStorageConnectionString,
                container: new SearchIndexerDataContainer(ContainerName)
                );

            // Create or update the data sourceindexerClient.CreateOrUpdateDataSourceConnection(dataSources);
            Console.WriteLine("Create or Update dataStorage operation has been completed for the name: " + DataSourceName);

            //upload pdf file
           //string BlobName =  UploadFileToBlobStorage(filePath);
           // Console.WriteLine("uploaded PDF file to blobstorage:  " + BlobName);


            //Create Skillsets
            CreateOrUpdateSkillSets();
            
//Define Indexer parameters
            IndexingParameters indexingParameters = new IndexingParameters()
            {
                MaxFailedItems = -1,
                MaxFailedItemsPerBatch = -1,
            };

            indexingParameters.Configuration.Add("dataToExtract", "contentAndMetadata");
            indexingParameters.Configuration.Add("parsingMode", "default");
            indexingParameters.Configuration.Add("allowSkillsetToReadFileData", true);

            // Create the indexer
            var indexer = new SearchIndexer(indexerName, DataSourceName, IndexName) 
            {
                SkillsetName = "sanindexerskillset1",
                Description = "Blob indexer",
                Parameters = indexingParameters
            };

            //FieldMappingFunction mappingFunction = new FieldMappingFunction("base64Encode");
            //mappingFunction.Parameters.Add("useHttpServerUtilityUrlTokenEncode", true);

            //indexer.FieldMappings.Add(new FieldMapping("metadata_storage_path") {TargetFieldName = "id", MappingFunction = mappingFunction});
            //indexer.FieldMappings.Add(new FieldMapping("content") { TargetFieldName = "content"});
            //indexer.FieldMappings.Add(new FieldMapping("metadata_storage_name") { TargetFieldName = "title" });
        
                // Create or update the indexer
                indexerClient.CreateOrUpdateIndexer(indexer);
                // Run the indexer
                indexerClient.RunIndexer(indexerName);

            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.ToString());
            }


        }

    public void CreateOrUpdateSkillSets()
        {
            // Create a SearchIndexerClient using the search service endpoint and API key
            AzureKeyCredential credential = new AzureKeyCredential(SearchAdminApiKey);
            SearchIndexerClient searchIndexerClient = new SearchIndexerClient(ServiceEndpoint, credential);
            string skillsetName = "sanindexerskillset1";
            string projectionName = "sanindexerprojectionname1";


            var collection = new List<SearchIndexerSkill>()
            {  
                //Extract text PDFs
                new DocumentExtractionSkill(
                    new List<InputFieldMappingEntry>
                    {
                        new InputFieldMappingEntry("file_data")
                        {
                            Source = "/document/content"
                            
                            //Target = "input"
                        }
                    },
                     new List<OutputFieldMappingEntry>
                    {
                        new OutputFieldMappingEntry("text")
                        {
                            TargetName = "extractedText"
                        }
                     })
                {  Context = "/document", Description = "Extract text from documents"}, 

              
                //Shape the data into a vector
                 new ShaperSkill(
                     new List<InputFieldMappingEntry>
                    {
                        new InputFieldMappingEntry("text")
                        {
                            Source = "/document/content"
                        }
                    },
                    new List<OutputFieldMappingEntry>
                    {
                        new OutputFieldMappingEntry("output")
                        {
                            TargetName = "contentvector"
                        }
                    }) { Context = "/document", Description = "Shape the data into a vector"},
            };

            // Create the skillset
            var skillset = new SearchIndexerSkillset(skillsetName, new List<SearchIndexerSkill>(collection));
            Console.WriteLine("Create or Update Indexer skill sets Skillsets name: " + skillsetName);
            try
            {
               
                // Create or update the skillset
                searchIndexerClient.CreateOrUpdateSkillset(skillset);
                Console.WriteLine("Skillset created successfully! Skillsets name:" + skillsetName);
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.Message);
            }
 
        }

Indexer started running but throws an error "Required skill input was not in the expected format. Name: 'file_data', Source: '$(/document/content)', Error: 'Missing file reference object'". Even I am bit confuse how to convert the file content data to 1536 dimension Vetor data using Indexer. Please suggest me if I am doing anything wrong or a suggestion to achieve what I am expecting.


Solution

  • There is a few things worth clarifying here.

    1. In the generaly use case, you shouldn't need a DocumentExtractionSkill for a file pulled directly from your Blob datasource. The document extraction process will be automatically performed prior to your skillset being run for these files, and the text content from the file will be places in the '/document/content' field.
      1. To be more specific, the DocumentExtractionSkill is for extracting content from embedded files that may be returned as part of custom skill execution, which you are not doing here. I also notice you are setting the 'allowSkillsetToReadFileData' parameter to true. Because you have set this parameter, if you really wanted to, you could pass '/document/file_data' to the DocumentExtractionSkill and extract the text that way as well. But that would ultimately be redundant since the text is already extracted to the '/document/content' field in your case. So basically I'm saying I don't think you need to set 'allowSkillsetToReadFileData' either.
    2. The ShaperSkill you have that is outputting your Contentvector field is not going to generate a vector embedding value like I think you are intending. That skill is to shape other existing fields into an output complex type, so in your example all 'contentvector' is going to have is the original document content wrapped in a JSON object.

    I highly recommend you check out this demo that we have that shows the current method for ingesting data and generating vector embeddings for vector search using indexers. It utilizes the Azure Open AI service for generating vector embeddings, but you could write your own custom skill to use a different vector embedding service or model as well.

    https://github.com/Azure/cognitive-search-vector-pr/blob/main/demo-python/code/azure-search-vector-ingestion-python-sample.ipynb