apache-sparkspark-java

How to set schema into spark.sql.function.from_csv?


I use spark-3.4.1-hadoop3 on windows 11. And I try to generate the schema to pass into from_csv function parameter. Belows are my codes.

import org.apache.spark.sql.Column;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import static org.apache.spark.sql.functions.col;
import static org.apache.spark.sql.functions.from_csv;
import static org.apache.spark.sql.functions.not;

import java.util.HashMap;
import java.util.Map;

SparkSession spark = SparkSession.builder().appName("FromCsvStructExample").getOrCreate();

Dataset<Row> df = spark.read().format("csv")
      .option("header", "true")
      .option("inferSchema", "true")
      .load("/path/to/csv/file");

Map<String, String> options = new HashMap<String, String>();

String schemaString = "name string, age int, job string";

Column schema = from_csv(col("csv"), col(schemaString), options);
Dataset<Row> parsed = df.select(schema.as("data"));
parsed.printSchema();
spark.close();

But the codes throw the following exceptions.

Exception in thread "main" org.apache.spark.sql.AnalysisException: [INVALID_SCHEMA.NON_STRING_LITERAL] The input schema "name string, age int, job string" is not a valid schema string. The input expression must be string literal and not null.
        at org.apache.spark.sql.errors.QueryCompilationErrors$.unexpectedSchemaTypeError(QueryCompilationErrors.scala:1055)    
        at org.apache.spark.sql.catalyst.expressions.ExprUtils$.evalTypeExpr(ExprUtils.scala:42)
        at org.apache.spark.sql.catalyst.expressions.ExprUtils$.evalSchemaExpr(ExprUtils.scala:47)
        at org.apache.spark.sql.catalyst.expressions.CsvToStructs.<init>(csvExpressions.scala:72)
        at org.apache.spark.sql.functions$.from_csv(functions.scala:4955)
        at org.apache.spark.sql.functions.from_csv(functions.scala)
        at com.aaa.etl.processor.Test_CSV.main(Test_CSV.java:43)

I am afraid the schemaString is not correct for org.apache.spark.sql.functions.col function. Kindly inform me how to generate the schema with org.apache.spark.sql.functions.col function. I know there is overloaded from_csv function which schema parameter type is StructType. But in using this function I have to make scala function and I even have no basic knowledge of scala.

== Updated Part

I try to use the Java-specific from_csv method.

from_csv(Column e, Column schema, java.util.Map<String,String> options)

As you know the type of schema is not StructType, but Column. I am stuck on this part. I have no idea how to generate the Column type schema in java. If you have any reference which generate the java Column type schema, Kindly inform me how.


Solution

  • You are right you can't generate directly a Column given a DDL string. One way is to use lit or StructType.fromDDL function. As you already mentioned one signature of from_csv function accepts a StructType for the schema. Then the Scala code would look as next:

    import org.apache.spark.sql.types.StructType
    
    var schema: StructType = StructType.fromDDL("name string, age int, job string")
    
    // StructType(
    //   StructField(name,StringType,true),
    //   StructField(age,IntegerType,true),
    //   StructField(job,StringType,true)
    // )
    
    val targetCol = from_csv(col("csv"), schema, options)
    

    The code should be very similar for Java.

    As per the other signature of from_csv, which accepts a Column instead of a StructType, it is used in combination with lit function as shown in the corresponding unit test. This is for cases where you prefer passing the schema as a string.

    For your case that would have been:

    val schema = "name string, age int, job string"
    
    val targetCol = from_csv(col("csv"), lit(schema), options)