pythonscipyequation-solvingnonlinear-equation

Solving an equation with one variable in Python


I am trying to solve the equation: log(1+x)/x - 1/(1+x) == 2/3 * q * x**2 for x with q = 4e-4

I tried

import numpy as np
import scipy.optimize as so
q = 4e-4
eqn = lambda x: np.log(1+x) / x  -  1 / (1+x)   -   2/3 * q * x**2 
sol = so.fsolve(eqn, 1)[0]
print(sol)

and

q = 4e-4
eqn = lambda x: np.log(1+x) / x  -  1 / (1+x)   -   2/3 * q * x**2 
sol = so.root_scalar(eqn, bracket=(1e-6, 1e20)).root
print(sol)

but get absurd answers.

I tried plotting the equation as follows: enter image description here

I am expecting the answer to be x ~ 20. How do I get this?


Solution

  • These algorithms work best when you provide a good initial guess or a tighter bracket.

    import numpy as np
    from scipy.optimize import fsolve, root_scalar, root
    
    def eqn(x): 
        q = 4e-4
        return np.log(1+x)/x - 1/(1+x) - 2/3*q*x**2
    
    
    sol_fsolve = fsolve(eqn, 10)[0]
    sol_rootscalar = root_scalar(eqn, bracket=(1e-6, 100)).root
    sol_root = root(eqn, 10).x[0]
    
    print(sol_fsolve)       # 19.84860182482322
    print(sol_rootscalar)   # 19.848601824823366
    print(sol_root)         # 19.84860182482322