I have a vector a
produced by neural model which need to interact with a huge matrix M
. Since M
is large, I have to do the computation in cpu device. In this case, I wonder if the gradient can be retained and backwarded on cuda device.
Example as below:
a_cuda = torch.randn([1, 512], requires_grad=True).to("cuda")
a_cpu = torch.randn([1, 512], requires_grad=True).to("cpu")
M = torch.randn([512, 100000], requires_grad=False) # loaded in cpu device, dont need update
out_cuda = (a_cuda.cpu() @ M).sum()
out_cuda.backward()
out_cpu = (a_cpu @ M).sum()
out_cpu.backward()
print(a_cuda.grad) # None
print(a_cpu.grad)
I am looking for solution such that a_cuda.grad
has the same gradients as a_cpu.grad
.
Sure.
Try this:
a_cuda = torch.randn([1, 512], requires_grad=True, device='cuda')
a_cpu = torch.randn([1, 512], requires_grad=True)
M = torch.randn([512, 100000], requires_grad=False) # loaded in cpu device, dont need update
out_cuda = (a_cuda.cpu() @ M).sum()
out_cuda.backward()
out_cpu = (a_cpu @ M).sum()
out_cpu.backward()
print(a_cuda.grad)
print(a_cpu.grad)