I have a simple problem, wherein I have a training set of 80 points and a testing set of 20 points, which I am plotting against their corresponding values of bearing stress on the z axis, where the x axis is thickness and y axis is diameter of a component I am optimizing. I get the response as I want it, but it looks like it is not being rendered properly and even with very low alpha values, it seems to be causing the issue.
f_bru = [9060.3, 4373.6, 2913.2, 2146.7, 1686.9, 1396.2, 1155.1, 1015.2,
1048.3, 841.1, 3302.2, 1768.5, 1245.4, 853.3, 688.7, 572.4, 578.4,
473.9, 444.6, 384.6, 2342.3, 1183.2, 801.0, 539.7, 460.9, 401.8,
331.1, 284.7, 271.5, 235.9, 1758.1, 822.2, 582.0, 373.5, 329.7,
305.3, 243.0, 218.5, 193.4, 159.9, 1402.8, 666.4, 419.5, 355.7,
269.5, 219.6, 198.7, 177.1, 143.4, 136.7, 1111.4, 530.7, 340.8,
270.6, 225.7, 188.1, 152.4, 123.6, 123.6, 105.2, 948.3, 483.5,
315.2, 239.9, 181.7, 151.9, 131.3, 117.2, 112.2, 97.7, 800.4,
392.9, 277.0, 214.3, 149.8, 145.1, 103.2, 105.7, 87.1, 85.5, 724.8,
351.1, 240.3, 168.6, 145.1, 116.8, 108.0, 83.5, 86.0, 70.5, 650.4,
318.6, 209.8, 162.8, 126.7, 98.9, 95.9, 80.9, 62.6, 65.2]
t = [15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0,
35.5625, 35.5625, 35.5625, 35.5625, 35.5625, 35.5625, 35.5625, 35.5625, 35.5625, 35.5625,
56.125, 56.125, 56.125, 56.125, 56.125, 56.125, 56.125, 56.125, 56.125, 56.125,
76.6875, 76.6875, 76.6875, 76.6875, 76.6875, 76.6875, 76.6875, 76.6875, 76.6875, 76.6875,
97.25, 97.25, 97.25, 97.25, 97.25, 97.25, 97.25, 97.25, 97.25, 97.25,
117.75, 117.75, 117.75, 117.75, 117.75, 117.75, 117.75, 117.75, 117.75, 117.75,
138.375, 138.375, 138.375, 138.375, 138.375, 138.375, 138.375, 138.375, 138.375, 138.375,
158.875, 158.875, 158.875, 158.875, 158.875, 158.875, 158.875, 158.875, 158.875, 158.875,
179.5, 179.5, 179.5, 179.5, 179.5, 179.5, 179.5, 179.5, 179.5, 179.5,
200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0]
d = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0,
10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0,
10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0,
10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0,
10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0,
10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0,
10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0,
10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0,
10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0,
10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]
d1 = list(d)
t1 = list(t)
a = [(t1[i], d1[i]) for i in range(len(t))]
y = np.array(f_bru)
x_train, x_test, y_train, y_split = train_test_split(a,y, test_size=0.2, train_size=0.8)
t_train, d_train = zip(*x_train)
t_test, d_test = zip(*x_test)
t_test = np.array(t_test)
d_test = np.array(d_test)
t_train = np.array(t_train)
d_train = np.array(d_train)
t = np.array(t)
d = np.array(d)
f_bru = np.array(f_bru)
def func(td, c1 = 1, c2 = 1, c3 = 1, c4 = 1):
t,d = td
return c1 + c2*d**-1 + c3*t**-1 + c4*(d**-1*t**-1)
popt, pcov = curve_fit(func, (t,d), f_bru)
#Generate fitted surface
t_fit, d_fit = np.meshgrid(t,d)
f_bru_fit = func((t_fit, d_fit), *popt)
#Approximated values of f_bru
f_bru_predicted = func((t_test, d_test), *popt)
#plot the training and validation data points and the fitted surface
fig1 = plt.figure(figsize=(16,16))
axes = fig1.add_subplot(111, projection = '3d')
axes.scatter(t_train, d_train, y_train, c = 'b', marker = 'o', label = 'Training set')
axes.scatter(t_test, d_test, y_split, c = 'r', marker = 'o', label = "Testing set")
#generate a plot with surface fit
axes.plot_surface(t_fit, d_fit, f_bru_fit, color='y', alpha = 0.05)
axes.set_xlabel('t')
axes.set_ylabel('d')
axes.set_zlabel('Bearing stress in MPa')
plt.title('3D plot')
plt.show()
The surface plot that it generates looks like it could be rendered better and its opacity changes with the direction in which it is being moved, at the same time making it difficult to actually see some of the points that are being plotted as I need to view the randomness with which the points are being plotted. I checked by running a few other response surface codes given to me as an example and they appear to be perfect, however not this one.
The artifact you have is due to misordered points in your meshgrid.
Once you have regressed your parameters, it does not matter which points (independent variables) you use to plot (train or test, or something else), they will be part of the same surface.
So, it is sufficient to plot the surface with an ad hoc grid (rectangular and sorted):
t = np.array(t)
d = np.array(d)
z = np.array(f_bru)
tlin = np.linspace(t.min(), t.max(), 50)
dlin = np.linspace(d.min(), d.max(), 50)
T, D = np.meshgrid(tlin, dlin)
Z = func((T, D), *popt)
fig = plt.figure()
axes = fig.add_subplot(111, projection = '3d')
axes.plot_surface(T, D, Z, color='y', alpha = 0.5)
axes.scatter(t_train, d_train, y_train, c = 'b', marker = 'o', label = 'Training set')
axes.scatter(t_test, d_test, y_split, c = 'r', marker = 'o', label = "Testing set")