game-enginedvulkan

What is wrong with my MVP matrix operations?


I'm trying to program a 3D graphic engine (almost game engine) using Vulkan, following https://vulkan-tutorial.com/. I've gotten to end of the Uniform Buffer section but instead of nicely angled rotating square, my square is pivoting through the void.

enter image description here

I'm updating the Uniform Buffers like this:

void updateUniformBuffer(ref Application app, uint currentImage)
{
    MonoTime currentTime = MonoTime.currTime;
    float time = 0.0f;

    time = (currentTime - app.startTime).total!"msecs"() / 50.0f;
    // writeln("time: ", time);
    vec3 rotation_data = [time, 0.0f , 1.0f];
    mat4 modelMatrix;
    modelMatrix = mat4.identity().rotate_new(90.0f, rotation_data); 

    UniformBufferObject ubo = {
        model: modelMatrix,
        view: lookAt(vec3([2.0f, 02.0f, 2.0f])
            , vec3([0.0f, 0.0f, 0.0])
            , vec3([0.0f, -1.0f, -1.0f])
        ),
        proj: perspective(45.0f, app.width/cast(float)app.height, 0.1f, 10.0f),
    };

//  For debugging
//    ubo.model = mat4.identity();
//    ubo.view = mat4.identity();
//    ubo.proj = mat4.identity();

    //ubo.proj[2] = 1;
    writeln("Uniform buffer Model: \n", ubo.model);
    // writeln("Uniform buffer View: \n", ubo.view);

    ubo.proj[5] = -1 * ubo.proj[5];
    ubo.proj[15] = 1;
    // writeln("Uniform buffer Projection: \n", ubo.proj);

    void* data;
    vkMapMemory(app.device, app.uniformBuffersMemory[currentImage], 0, ubo.sizeof, 0, &data);
    memcpy(data, &ubo, ubo.sizeof);
    vkUnmapMemory(app.device, app.uniformBuffersMemory[currentImage]);
}

My Matrix Operations code looks like this:

module matrix;

import std.math;

import dlib;

vec3 normalise(ref vec3 v)
{
    float len = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
    if (len == 0.0f) 
        return v;
    v[0] /= len;
    v[1] /= len;
    v[2] /= len;
    return v;
}

vec3 crossProduct(vec3 v1, vec3 v2)
{
    vec3 res = [ 0.0f, 0.0f, 0.0f ];
    res[0] = v1[1]*v2[2] - v1[2]*v2[1];
    res[1] = v1[2]*v2[0] - v1[0]*v2[2];
    res[2] = v1[0]*v2[1] - v1[1]*v2[0];
    return res;
}

// https://www.3dgep.com/understanding-the-view-matrix/
/***
    * 
    * @param camera 
    * @param target 
    * @param up 
    * @returns 
    *
    * 1. Calculate the camera's forward vector.
    * 2. Calculate the camera's right vector.
    * 3. Calculate the camera's up vector.
    * 4. Calculate the orientation matrix.
    * 5. Calculate the translation matrix.
    * 6. Return the view matrix.
*/
mat4 lookAt(vec3 camera, vec3 target, vec3 up) 
{
    mat4 res;

    auto a = target - camera;
    normalise(a);

    auto b = crossProduct(a, up);
    normalise(b);

    auto c = crossProduct(b, a);

    res[0] = b[0]; 
    res[1] = c[0]; 
    res[2] = -a[0]; 
    res[3] = 0.0f; 
    res[4] = b[1]; 
    res[5] = c[1]; 
    res[6] = -a[1]; 
    res[7] = 0.0f; 
    res[8] = b[2]; 
    res[9] = c[2]; 
    res[10] = -a[2]; 
    res[11] = 0.0f; 
    res[12] = 0.0f;
    res[13] = 0.0f;
    res[14] = 0.0f;
    res[15] = 1.0f;    
    mat4 orientation = [
        b[0] , c[0] , a[0] , 0.0f,
        b[1] , c[1] , a[1] , 0.0f,
        b[2] , c[2] , a[2] , 0.0f,
        0.0f , 0.0f , 0.0f , 1.0f
    ];

    mat4 translation = [
        1.0f      , 0.0f      , 0.0f      , 0.0f, 
        0.0f      , 1.0f      , 0.0f      , 0.0f,  
        0.0f      , 0.0f      , 1.0f      , 0.0f, 
        -camera[0], -camera[1], -camera[2], 1.0f
    ];
    return res;
//    return orientation.multiply(translation);
}

mat4 perspective(float degrees, float ratio, float near, float far)
{
    // https://vincent-p.github.io/posts/vulkan_perspective_matrix/
    mat4 returnme = mat4.zero();
    float y = (1.0f / cos(degrees * PI / 180.0f));
    // float y = 1.0f / tan(degrees * (PI / 180.0f) * 0.5f);                        // cos(radians * PI / 180.0f);
    float x = y / ratio;
    float visible_length = far - near;

    returnme[0] = x;
    returnme[5] = -y;
    returnme[10] = -((far + near) / visible_length);  // -((far + near) / visible_length);
    returnme[11] = -1.0f; // (near * far) / (visible_length) ;
    returnme[14] = -((2.0f * near * far) / visible_length); // 1.0f;

    return returnme;
}

mat4 multiply(const mat4 m1, const mat4 m2)
{
    mat4 res;
    res[0] = m1[0]*m2[0] + m1[1]*m2[4] + m1[2]*m2[8]  + m1[3]*m2[12];
    res[1] = m1[0]*m2[1] + m1[1]*m2[5] + m1[2]*m2[9]  + m1[3]*m2[13];
    res[2] = m1[0]*m2[2] + m1[1]*m2[6] + m1[2]*m2[10] + m1[3]*m2[14];
    res[3] = m1[0]*m2[3] + m1[1]*m2[7] + m1[2]*m2[11] + m1[3]*m2[15];
    res[4] = m1[4]*m2[0] + m1[5]*m2[4] + m1[6]*m2[8]  + m1[7]*m2[12];
    res[5] = m1[4]*m2[1] + m1[5]*m2[5] + m1[6]*m2[9]  + m1[7]*m2[13];
    res[6] = m1[4]*m2[2] + m1[5]*m2[6] + m1[6]*m2[10] + m1[7]*m2[14];
    res[7] = m1[4]*m2[3] + m1[5]*m2[7] + m1[6]*m2[11] + m1[7]*m2[15];
    res[8] = m1[8]*m2[0] + m1[9]*m2[4] + m1[10]*m2[8]  + m1[11]*m2[12];
    res[9] = m1[8]*m2[1] + m1[9]*m2[5] + m1[10]*m2[9]  + m1[11]*m2[13];
    res[10] = m1[8]*m2[2] + m1[9]*m2[6] + m1[10]*m2[10] + m1[11]*m2[14];
    res[11] = m1[8]*m2[3] + m1[9]*m2[7] + m1[10]*m2[11] + m1[11]*m2[15];
    res[12] = m1[12]*m2[0] + m1[13]*m2[4] + m1[14]*m2[8]  + m1[15]*m2[12];
    res[13] = m1[12]*m2[1] + m1[13]*m2[5] + m1[14]*m2[9]  + m1[15]*m2[13];
    res[14] = m1[12]*m2[2] + m1[13]*m2[6] + m1[14]*m2[10] + m1[15]*m2[14];
    res[15] = m1[12]*m2[3] + m1[13]*m2[7] + m1[14]*m2[11] + m1[15]*m2[15];

    return res;
}

vec4 multiply(const mat4 m1, const vec3 v)
{
    vec4 res;
    res[0] = m1[0]*v[0] + m1[1]*v[1] + m1[2]*v[2];
    res[1] = m1[4]*v[1] + m1[5]*v[1] + m1[6]*v[2];
    res[2] = m1[8]*v[2] + m1[9]*v[1] + m1[10]*v[2];
    res[3] = 1.0f;

    return res;
}

mat4 multiply(const vec3 v, const mat4 m2)
{
    mat4 m1 = [ v[0], v[1], v[2], 1.0f , 
        0.0f, 0.0f, 0.0f, 0.0f,
        0.0f, 0.0f, 0.0f, 0.0f,
        0.0f, 0.0f, 0.0f, 0.0f,
    ];

    return multiply(m1, m2);
}

/**
Rotate a matrix by an angle around a vector
Parameters
    m       Input matrix multiplied by this rotation matrix.
    angle   Rotation angle expressed in radians.
    v       Rotation axis, recommended to be normalized. 
*/
mat4 rotate_new(const mat4 m, float angle, const vec3 v) 
{
  float α = (v[0] * PI) / 180.0f;
  float β = (v[1] * PI) / 180.0f; //radian(v[1]); 
  float γ = (v[2] * PI) / 180.0f; //radian(v[2]);
  // rotate around x, then y, then z
  // http://web.archive.org/web/20140515121518/http://inside.mines.edu:80/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.html
  mat4 mt = [
        cos(α)*cos(β), (cos(α)*sin(β)*sin(γ)) - (sin(α)*cos(γ)), (cos(α)*sin(β)*cos(γ)) + (sin(β)*sin(γ)), 0.0f,
        sin(α)*cos(β), (sin(α)*sin(β)*sin(γ)) + (cos(α)*cos(γ)), (sin(α)*sin(β)*cos(γ)) - (cos(β)*sin(γ)), 0.0f,
        -sin(β)      ,  cos(β)*sin(γ)                          ,  cos(β)*cos(γ)                          , 0.0f,
        0.0f        ,  0.0f                                   ,  0.0f,                                    1.0f 
    ]
  ;
  auto r = mt.multiply(m);
  return(r);
}

unittest {
    mat4 m = [  1, 2, 3, 4 ,
                5, 6, 7, 8 ,
                9, 10, 11, 12 ,
                13, 14, 15, 16 ];
    assert(m.multiply(m) == [ 90.0f, 100.0f, 110.0f, 120.0f, 
        202.0f, 228.0f, 254.0f, 280.0f, 
        314.0f, 356.0f, 398.0f, 440.0f, 
        426.0f, 484.0f, 542.0f, 600.0f]);

    // vec3 v = [0, 0, 0];
    // writeln(m.rotate_new(0, v));
    // assert
}

Edit 1: After altering the program as per @Thomas suggestion

    modelMatrix = mat4.identity().rotate_new(time, rotation_data); 

    UniformBufferObject ubo = {
        model: modelMatrix,
        view: lookAt(vec3([2.0f, 2.0f, 2.0f])
            , vec3([0.0f, 0.0f, 0.0])
            , vec3([0.0f, -1.0f, -1.0f])
        ),
        proj: perspective(45.0f, app.width/cast(float)app.height, 0.1f, 10.0f),
    };

the image remains but doesn't rotate. It is still at an odd angle, and clipped diagonally. enter image description here


Solution

  • Changing my perspective matrix fixed the issue, after @Thomas prompted me that weird clipping is due to my far plane being set incorrectly.

    mat4 perspective(float degrees, float ratio, float near, float far)
    {
        // https://vincent-p.github.io/posts/vulkan_perspective_matrix/
        mat4 returnme = mat4.zero();
        float y = (1.0f / cos(degrees * PI / 180.0f));
        // float y = 1.0f / tan(degrees * (PI / 180.0f) * 0.5f);                        // cos(radians * PI / 180.0f);
        float x = y / ratio;
        float visible_length = far - near;
    
        returnme[0] = -x;
        returnme[5] = -y;
        returnme[10] = -near/visible_length;                    //-((far + near) / visible_length);  // -((far + near) / visible_length);
        returnme[11] = 1.0f;                                    //-1.0f; // (near * far) / (visible_length) ;
        returnme[14] = (near * far) / (visible_length) ;        //-((2.0f * near * far) / visible_length); // 1.0f;
    
        return returnme;
    }