I have a large dataset with four variables, like this:
Public_Issue | Voter_Partisanship | Population | value |
---|---|---|---|
2 | non-partisan | Politicians | 40 |
2 | moderately-partisan | Voters | 42 |
2 | moderately-partisan | Politicians | 56 |
2 | highly-partisan | Voters | 72 |
4 | non-partisan | Voters | 24 |
4 | non-partisan | Politicians | 13 |
4 | moderately-partisan | Voters | row |
4 | highly-partisan | Voters | 82 |
4 | highly-partisan | Politicians | 88 |
6 | non-partisan | Voters | 36 |
6 | moderately-partisan | Politicians | 61 |
6 | highly-partisan | Politicians | 67 |
I am trying to create a DF with the means and standard deviations that would look something like this:
Population | Voter_Partisanship | PI2_GroupMean | PI2_GroupSD | PI4_GroupMean | PI4_GroupSD | PI6_GroupMean | PI6_GroupSD |
---|---|---|---|---|---|---|---|
Politician | non-partisan | # | # | # | # | # | # |
Politician | moderately-partisan | # | # | # | # | # | # |
Politician | highly-partisan | # | # | # | # | # | # |
Voter | non-partisan | # | # | # | # | # | # |
Voter | moderately-partisan | # | # | # | # | # | # |
Voter | highly-partisan | # | # | # | # | # | # |
Any help would be greatly appreciated.
I've included a subset of the data below:
structure(list(Public_Issues = c(4, 20, 18, 4, 10, 4, 8, 10,
16, 16, 16, 14, 18, 6, 2, 18, 4, 10, 12, 8, 8, 2, 4, 4, 12, 6,
10, 20, 6, 14, 8, 10, 6, 20, 10, 4, 10, 10, 4, 2, 20, 8, 16,
4, 6, 2, 14, 2, 8, 4, 18, 4, 18, 2, 4, 4, 4, 16, 16, 2, 12, 10,
6, 12, 2, 2, 8, 18, 14, 2, 2, 2, 2, 8, 18, 14, 10, 6, 2, 20,
4, 8, 18, 16, 2, 6, 18, 20, 14, 14, 14, 16, 12, 20, 6, 20, 14,
20, 16, 20, 20, 6, 8, 10, 8, 10, 16, 12, 2, 20, 20, 20, 6, 14,
6, 10, 4, 20, 16, 8, 6, 10, 14, 4, 20, 12, 10, 4, 14, 8, 4, 10,
8, 14, 16, 12, 16, 12, 16, 10, 2, 18, 6, 2, 14, 10, 6, 2, 10,
4, 18, 20, 8, 10, 6, 16, 6, 16, 10, 14, 18, 4, 8, 16, 6, 14,
20, 18, 16, 14, 8, 4, 20, 10, 12, 16, 8, 10, 18, 2, 18, 16, 10,
14, 8, 4, 2, 14, 12, 16, 16, 14, 20, 12, 8, 16, 10, 14, 20, 14,
18, 2, 2, 6, 12, 2, 20, 6, 18, 8, 18, 14, 10, 8, 18, 10, 16,
4, 20, 2, 12, 8, 2, 18, 18, 18, 2, 14, 8, 16, 6, 18, 8, 12, 10,
20, 2, 18, 8, 14, 14, 8, 8, 18, 14, 20, 16, 20, 12, 8, 18, 16,
14, 2, 16, 12, 4, 2, 20, 14, 10, 2, 18, 18, 2, 8, 20, 4, 20,
12, 10, 2, 16, 4, 4, 20, 18, 4, 8, 16, 10, 18, 10, 4, 8, 12,
12, 12, 6, 4, 14, 18, 20, 6, 8, 18, 8, 20, 8, 20, 16, 8, 8, 10,
16, 8, 12, 18, 20, 20, 18, 12, 12, 14, 16, 12, 4, 18, 16, 10,
6, 8, 6, 10, 8, 12, 2, 10, 16, 16, 16, 12, 10, 2, 18, 4, 20,
2, 4, 10, 6, 14, 8, 8, 4, 4, 8, 20, 12, 6, 16, 16, 6, 6, 10,
6, 16, 18, 18, 14, 4, 16, 2, 6, 14, 6, 8, 18, 8, 18, 4, 4, 16,
8, 18, 16, 18, 2, 10, 2, 8, 6, 2, 8, 10, 14, 20, 4, 20, 18, 6,
6, 6, 2, 12, 8, 2, 8, 10, 14, 16, 12, 12, 16, 2, 6, 18, 16, 8,
4, 10, 16, 18, 10, 8, 18, 8, 12, 2, 16, 10, 8, 10, 12, 20, 12,
2, 14, 16, 6, 8, 10, 6, 14, 18, 12, 2, 4, 20, 6, 14, 2, 20, 6,
2, 18, 10, 10, 12, 6, 10, 16, 4, 14, 6, 14, 2, 18, 10, 6, 2,
18, 8, 12, 12, 12, 16, 8, 10, 12, 18, 8, 4, 16, 16, 10, 4, 2,
6, 12, 18, 12, 4, 6, 20, 16, 8, 10, 10, 12, 10, 20, 18, 16, 12,
2, 16, 10, 14, 18, 16, 4, 8, 14, 18, 16, 20, 8, 20, 8, 4, 14,
8, 16, 12, 16, 20, 12, 18, 18, 6, 6, 6, 20, 6, 6, 8, 14, 20,
10, 6, 4, 6, 6, 16, 6, 4, 12, 2, 6, 16, 4, 18, 8, 2, 8, 4, 18,
2, 14, 18, 8, 14, 2, 10, 20, 8, 10, 18, 4, 6, 18, 10, 10, 14,
6, 18, 14, 10, 20, 4, 16, 14, 16, 10, 16, 4, 16, 14, 4, 12, 14,
4, 20, 8, 20, 18, 8, 18, 20, 4, 18, 12, 8, 18, 14, 8, 18, 18,
2, 2, 8, 14, 16, 14, 18, 20, 12, 16, 14, 8, 12, 20, 14, 6, 16,
6, 14, 20, 6, 18, 14, 14, 16, 10, 4, 12, 4, 8, 18, 14, 6, 8,
12, 8, 2, 8, 6, 4, 2, 8, 18, 14, 6, 18, 16, 4, 10, 2, 16, 14,
18, 18, 20, 20, 16, 4, 10, 4, 6, 18, 6, 18, 18, 10, 18, 18, 8,
4, 6, 20, 6, 12, 12, 12, 10, 20, 8, 20, 18, 18, 10, 2, 18, 2,
2, 14, 16, 10, 2, 8, 14, 8, 20, 8, 8, 20, 10, 16, 2, 6, 6, 16,
18, 2, 20, 14, 6, 2, 4, 16, 18, 8, 16, 12, 14, 12, 20, 2, 16,
2, 8, 6, 16, 18, 18, 10, 18, 18, 20, 6, 8, 20, 10, 8, 8, 4, 2,
18, 18, 14, 10, 8, 10, 12, 8, 16, 2, 16, 12, 6, 14, 16, 6, 10,
16, 6, 20, 10, 18, 12, 16, 20, 8, 8, 18, 18, 2, 20, 20, 6, 6,
8, 16, 2, 14, 8, 18, 20, 12, 10, 8, 10, 4, 20, 6, 6, 16, 10,
4, 16, 12, 14, 14, 10, 14, 12, 4, 12, 8, 4, 10, 16, 16, 12, 6,
12, 4, 8, 2, 16, 8, 16, 14, 20, 6, 4, 8, 14, 6, 6, 6, 16, 10,
6, 12, 16, 2, 12, 8, 4, 8, 20, 2, 16, 18, 8, 18, 10, 8, 6, 4,
14, 8, 6, 2, 18, 8, 14, 10, 12, 20, 16, 14, 20, 8, 8, 14, 20,
4, 12, 6, 8, 12, 20, 16, 20, 4, 16, 14, 16, 14, 10, 2, 18, 18,
8, 18, 18, 14, 8, 4, 18, 12, 14, 18, 14, 14, 18, 20, 10, 4, 4,
14, 12, 16, 6, 10, 14, 18, 2, 8, 8, 2, 2, 8, 8, 6, 18, 4, 10,
10, 2, 20, 20, 16, 10, 16, 14, 18, 4, 10, 2, 4, 4, 20, 16, 4,
10, 14, 12, 14, 20, 14, 6, 20, 14, 14, 2, 14, 10, 16, 18, 16,
6, 20, 4, 18, 18, 12, 16, 14, 14, 16, 14, 12, 14, 20, 16, 20,
14, 4, 20, 8, 16, 14, 8, 18, 14, 20, 10, 10, 16, 2, 6, 2, 4,
16, 8, 10, 16, 4, 8, 4, 2, 16, 10, 4, 18, 18, 8, 16, 6, 2, 20,
12, 2, 4, 6, 16), Voter_Partisanship = structure(c(3L, 2L, 3L,
2L, 2L, 3L, 1L, 1L, 1L, 2L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 1L, 2L,
1L, 3L, 2L, 3L, 1L, 2L, 3L, 2L, 1L, 3L, 3L, 2L, 2L, 3L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
2L, 1L, 3L, 1L, 2L, 2L, 1L, 1L, 1L, 3L, 3L, 1L, 3L, 1L, 2L, 1L,
2L, 3L, 1L, 1L, 3L, 1L, 3L, 3L, 1L, 3L, 1L, 3L, 2L, 1L, 1L, 2L,
2L, 1L, 1L, 3L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, 3L,
3L, 2L, 3L, 1L, 1L, 2L, 2L, 2L, 3L, 2L, 1L, 1L, 3L, 1L, 1L, 3L,
3L, 1L, 2L, 3L, 3L, 1L, 2L, 3L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 2L, 1L, 3L, 1L, 3L, 2L, 3L, 3L, 1L, 2L, 1L, 1L,
3L, 2L, 2L, 1L, 1L, 3L, 1L, 3L, 3L, 3L, 1L, 3L, 1L, 1L, 2L, 2L,
3L, 3L, 2L, 2L, 1L, 3L, 2L, 1L, 2L, 2L, 1L, 2L, 3L, 1L, 3L, 3L,
3L, 2L, 2L, 3L, 2L, 3L, 2L, 3L, 2L, 2L, 1L, 3L, 3L, 2L, 3L, 2L,
1L, 1L, 1L, 3L, 3L, 1L, 1L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 1L, 3L,
2L, 3L, 2L, 3L, 1L, 1L, 1L, 3L, 2L, 1L, 3L, 3L, 3L, 2L, 2L, 2L,
2L, 3L, 3L, 1L, 2L, 1L, 3L, 3L, 3L, 3L, 1L, 2L, 2L, 1L, 3L, 3L,
1L, 1L, 1L, 3L, 3L, 2L, 3L, 3L, 1L, 1L, 2L, 3L, 3L, 3L, 1L, 3L,
3L, 2L, 1L, 3L, 1L, 2L, 3L, 1L, 1L, 1L, 3L, 1L, 1L, 3L, 3L, 1L,
3L, 3L, 3L, 1L, 2L, 2L, 3L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 1L, 2L,
2L, 2L, 3L, 2L, 2L, 3L, 2L, 2L, 3L, 1L, 2L, 3L, 1L, 3L, 1L, 2L,
3L, 1L, 3L, 2L, 3L, 1L, 3L, 2L, 2L, 1L, 3L, 1L, 3L, 3L, 3L, 2L,
1L, 3L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 3L, 2L,
3L, 2L, 3L, 2L, 1L, 1L, 2L, 3L, 2L, 1L, 2L, 3L, 3L, 2L, 2L, 3L,
1L, 2L, 3L, 3L, 2L, 2L, 3L, 3L, 2L, 2L, 1L, 2L, 3L, 3L, 2L, 3L,
2L, 3L, 1L, 1L, 3L, 2L, 3L, 2L, 3L, 1L, 2L, 1L, 1L, 1L, 3L, 3L,
1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 3L, 3L, 3L, 2L, 1L, 3L, 3L, 2L,
2L, 3L, 3L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L,
3L, 1L, 3L, 2L, 3L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, 2L, 1L,
3L, 3L, 3L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 2L, 2L,
1L, 3L, 1L, 3L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 1L, 3L, 1L, 3L, 2L,
2L, 1L, 1L, 2L, 3L, 1L, 3L, 1L, 2L, 2L, 1L, 2L, 3L, 2L, 1L, 1L,
1L, 2L, 1L, 1L, 3L, 1L, 1L, 1L, 2L, 2L, 3L, 3L, 2L, 3L, 1L, 3L,
2L, 3L, 2L, 2L, 3L, 2L, 1L, 3L, 3L, 2L, 3L, 3L, 3L, 2L, 1L, 1L,
2L, 1L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 2L,
1L, 1L, 2L, 1L, 1L, 2L, 1L, 3L, 1L, 3L, 2L, 3L, 3L, 2L, 1L, 1L,
3L, 1L, 2L, 3L, 3L, 1L, 1L, 3L, 3L, 3L, 2L, 3L, 1L, 2L, 3L, 3L,
1L, 1L, 1L, 3L, 3L, 1L, 1L, 2L, 1L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
3L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 3L, 1L, 3L, 2L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 1L, 1L,
2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 3L, 2L, 1L, 1L, 2L, 3L, 1L, 1L,
1L, 3L, 1L, 3L, 2L, 1L, 3L, 1L, 3L, 2L, 2L, 3L, 2L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 2L, 1L, 1L, 2L, 2L, 2L, 3L, 2L, 1L, 1L, 1L, 3L,
3L, 3L, 2L, 2L, 3L, 3L, 2L, 3L, 2L, 1L, 3L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 3L, 3L, 2L, 1L, 1L, 3L, 3L, 3L, 2L, 3L, 1L, 2L, 1L, 1L,
3L, 3L, 2L, 1L, 3L, 2L, 2L, 2L, 2L, 1L, 3L, 3L, 2L, 2L, 1L, 1L,
3L, 1L, 2L, 3L, 1L, 2L, 2L, 3L, 1L, 2L, 1L, 1L, 3L, 1L, 1L, 1L,
1L, 2L, 3L, 1L, 3L, 1L, 2L, 3L, 3L, 1L, 2L, 2L, 2L, 3L, 3L, 1L,
1L, 1L, 3L, 1L, 2L, 1L, 2L, 3L, 2L, 1L, 2L, 3L, 1L, 3L, 2L, 3L,
2L, 1L, 3L, 3L, 2L, 3L, 1L, 2L, 3L, 3L, 2L, 1L, 2L, 2L, 1L, 3L,
1L, 2L, 2L, 3L, 3L, 2L, 3L, 3L, 1L, 2L, 2L, 3L, 1L, 1L, 1L, 1L,
2L, 1L, 3L, 3L, 2L, 3L, 1L, 3L, 2L, 3L, 1L, 3L, 3L, 2L, 3L, 1L,
3L, 3L, 2L, 2L, 1L, 1L, 3L, 2L, 1L, 2L, 3L, 1L, 1L, 1L, 1L, 3L,
1L, 3L, 1L, 3L, 3L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 2L, 3L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 3L, 2L, 3L, 3L, 3L, 1L, 1L,
1L, 3L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 3L, 3L, 1L, 3L, 2L, 3L,
2L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 2L, 1L, 2L, 1L,
3L, 2L, 2L, 3L, 2L, 2L, 3L, 1L, 1L, 3L, 2L, 2L, 3L, 1L, 3L, 2L,
3L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 3L, 2L, 1L, 3L, 3L, 1L, 3L, 3L,
1L, 1L, 1L, 2L, 3L, 2L, 2L, 2L, 3L, 2L, 1L, 1L, 2L, 3L, 2L, 1L,
3L, 3L, 2L, 3L, 1L, 3L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 2L, 3L, 2L,
2L, 1L, 2L, 2L, 2L, 3L, 1L, 2L, 3L, 2L, 2L, 2L, 1L, 3L, 3L, 3L,
3L, 3L, 1L, 1L, 3L, 2L, 3L, 1L, 1L, 3L, 1L, 2L, 1L, 2L, 1L, 3L,
2L, 1L, 1L, 3L, 1L), levels = c("Non-Partisan", "Moderately Partisan",
"Strongly Partisan"), class = "factor"), Population = structure(c(2L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L,
2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L,
1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L,
2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L,
1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L,
2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L,
1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L,
2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L,
1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L,
1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L,
1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L,
2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L,
1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L,
2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L,
2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L,
2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L,
2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L,
1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L,
2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L,
1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L,
1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L,
1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 1L, 1L, 1L, 2L), levels = c("Voters", "Politicians"
), class = "factor"), value = c(NA, 0.7, 0.85, 0.6, 0.75, NA,
0.4, 0.25, 0.6, 0.95, 0.75, 0.75, 0.6, NA, 0.95, 0.6, 1, 0.45,
0.55, 0.7, 0.75, 1, 1, 0.5, 0.6, NA, 0.85, 0.35, NA, 0.65, 1,
NA, NA, 0.45, 0.75, 0.65, 0.5, 0.75, 0.45, 0.75, 0.75, 0.4, 0.5,
0.85, 0.4, 0.25, 0.6, 0.45, 0.55, NA, 0.75, 0.95, 0.4, 0.65,
0.3, 0.45, 0.95, 0.7, 0.35, 0.45, 0.85, 0.8, 0.9, 0.7, 0.6, 0.8,
0.65, 0.7, 0.85, 0.4, 0.05, 0.65, 0.35, NA, 0.65, 0.45, 1, 0.45,
1, 0.6, 0.3, 0.95, 0.7, 0.65, 0.65, 0.65, 0.65, 0.6, 0.75, 0.4,
0.45, 0.65, 0.5, 0.6, 0.3, 0.75, 0.8, 0.7, 0.75, 0.75, 0.65,
0.75, 0.45, 0.6, 0.55, NA, 0.75, 0.75, NA, 0.4, 0.4, 0.55, 0.45,
0.65, 0.75, NA, 0, 0.6, 0.75, NA, 0.6, 0.85, 0.85, 1, 0.8, 0.65,
0.9, NA, 0.45, 0.55, 0.55, 0.65, 0.8, 0.6, 0.75, 0.9, 0.55, 0.9,
0.4, NA, 0.95, 0.6, 0.7, 0.6, 0.7, 0.35, 0.35, 0.75, 0.7, 0.95,
0.65, 0.5, NA, 0.45, 1, 0.9, 1, 0.35, NA, 0.5, 0.55, NA, 1, 0.65,
NA, 0.8, 0.7, 0.4, 0.75, 0.95, 0.45, NA, 0.7, 0.45, 0.75, 0.8,
0.55, NA, 0.8, 0.9, 0.7, 0.8, 0.75, 0.85, 0.75, 1, 0.95, 0.7,
0.85, 0.35, 0.65, 0.8, 0.5, 0.7, 0.75, 0.5, 0.55, 0.55, 0.7,
0.7, 0.55, 0.7, 0.8, 0.65, 0.7, 1, 0.9, 0.7, 0.65, 0.65, 0.6,
0.6, 0.85, 0.9, 0.95, 0.6, 0.55, 0.45, 0.75, 1, 0.35, 0.55, NA,
0.65, 0.7, 0.55, 0.8, 0.7, 0.85, 0.8, 0.55, 0.65, 0.25, 0.9,
1, 0.7, NA, 0.6, 0.5, 0.7, 0.5, 0.75, 1, 0.4, 0.35, 0.45, 0.85,
0.65, 0.7, 0.75, 0.9, 0.65, 0.3, 0.95, 0.7, 0.85, 1, 0.5, 0.8,
1, 1, 0.3, 0.7, 0.45, 0.5, NA, 0.4, 0.5, 0.4, NA, 0.55, 0.85,
0.8, 0.5, 0.6, 0.65, 0.8, 0.75, 0.6, 0.55, 0.8, 0.8, 0.45, 0.3,
0.3, 0.6, 1, 1, 1, 1, 0.65, 0.65, 0.55, NA, 1, 0.55, 0.65, 0.7,
0.7, 0.7, 0.5, 1, NA, 0.35, NA, 0.5, 0.5, 0.9, 0.55, 0.85, 0.75,
NA, 0.3, 0.8, 0.45, 1, 0.65, 0.7, 0.3, 1, 1, NA, 1, 0.6, 0.75,
0.75, NA, 0.9, 0.75, 0.45, 0.4, 0.8, 0.35, 0.65, 0.6, 0.6, 0.55,
1, 1, 1, NA, 0.85, 0.6, 0.45, 0.6, 0.95, 1, 0.55, 0.45, 0.95,
0.8, 0.8, 0.55, NA, NA, 0.45, 0.4, 0.85, 0.8, 0.85, 1, 0.75,
0.7, 1, 0.65, 0, 0.65, 0.75, NA, 0.55, 0.75, 1, 0.75, 0.5, 0.35,
0.85, 0.5, 1, 1, 0.65, 0.55, 1, 0.8, 0.65, 0.5, 0.9, 0.65, 0.45,
0.45, 0.75, 0.4, 1, 0.55, 0.85, 0.7, NA, 0.65, NA, NA, 0.55,
0.7, 0.7, 0.8, 0.75, 0.95, 0.7, 0.5, 0.7, 1, 0.7, 1, 0.7, 0.55,
0.5, NA, 0.55, 0.3, 0.65, 0.85, 0.6, 0.5, 1, 0.65, 0.65, 0.7,
0.7, 1, 0.9, 0.9, 1, 0.7, 0.5, 0.75, 0.6, 0.6, 0.8, 1, NA, 0.7,
0.45, 0.4, 0.8, 0.7, 1, 0.7, 0.9, 0.75, 1, 0.45, 0.55, 0.4, 0.3,
1, 0.7, 0.45, 0.3, 0.55, 0.8, 1, 0.6, 0.95, 0.8, NA, 1, NA, 0.65,
0.6, 0.5, 1, 0.5, 0.7, NA, NA, 0.5, 0.8, 0.6, 0.7, 1, 0.6, 0.95,
0.45, 0.85, 1, 0.75, 0.5, 0.2, 1, NA, 0.35, 0.95, 0.5, 0.65,
0.9, 0.45, 0.9, NA, 0.7, 0.5, 0.55, 0.4, 0.55, 0.05, 0.3, NA,
0.35, 0.35, 0.65, 0.75, 0.55, 1, 1, 0.65, 0.75, 0.55, NA, 0.8,
0.7, 0.85, 0.6, 0.7, 0.55, 0.95, 1, 0.75, NA, NA, 0.8, 0.7, 0.65,
0.55, 0.9, 0.6, 0.4, 0.6, 0.75, 1, 0.7, 0.8, 0.8, NA, 0.85, NA,
0.7, NA, 0.95, 0.8, 0.4, 0.35, 0.45, 0.7, 0.5, 0.6, 0.75, 0.3,
0.8, 0.55, NA, 0.7, 0.75, NA, 0.65, 0.4, 0.6, 0.8, 0.35, 0.6,
0.75, 0.9, 0.4, 0.45, 0.8, 0.55, 0.85, 0.8, 0.7, 0.4, 1, 0.85,
0.7, 0.25, 0.4, 0.65, NA, 0.75, 0.6, 0.7, 0.8, 0.3, 0.45, 0.7,
0.75, 0.6, 0.95, NA, 0.6, 0.9, 0.55, 0.75, 0.65, 0.2, 0.5, 0.75,
0.3, 0.65, 0.4, 0.45, 0.5, 0.2, 0.7, 0.8, 0.3, 0.4, 0.4, 0.55,
0.85, 0.45, 0.85, 0.75, 0.65, 0.05, 0.75, 0.85, 0.65, 0.85, NA,
0.7, 0.5, NA, 0.45, 0.7, 0.7, 0.55, 0.6, 0.2, NA, 1, NA, 0.6,
0.4, 0.95, 0.7, 0.55, 0.6, 1, 0.9, 0.6, NA, 0.7, 0.6, 0.8, 0.3,
0.9, 0.7, 0.55, 0.8, 0.9, 0.95, 1, 1, 1, 0.75, 1, 0.9, 0.6, 0.55,
0.55, 0.75, 0.5, 0.6, 1, 0.45, 0.65, 0.2, 0.35, 0.75, 0.65, 0.75,
0.65, 0.6, 0.9, 0.8, NA, 1, 0.4, 0.15, 0.95, 0.4, 0.4, 0.3, 0.05,
0.5, 0.45, 0.45, 0.8, NA, 0.8, 0.4, 0.5, 0.8, 0.7, 1, NA, 0.55,
0.45, 0.5, 0.45, 0.35, NA, 0.6, 0.95, 0.65, 0.75, 0.6, 0.65,
0.85, 0.7, 0.25, 0.65, 0.95, 0.7, 0.95, 0.65, 0.45, 0.75, 0.55,
0.6, 0.65, 0.55, 0.8, 0.65, 0.65, 0.4, 0.7, 0.35, 0.6, 0.9, 0.55,
0.4, 0.4, 0.55, 0.6, NA, 0.5, 0.75, 0.4, 1, 0.7, 0.95, 0.4, 0.65,
1, 0.75, 0.6, NA, 0.55, 0.65, 0.6, 0.75, 0.65, 0.6, 0.45, 0.8,
0.85, 0.8, 0.5, 0.7, 0.9, 1, 0.75, 0.75, 0.7, 0.75, 0.45, 0.7,
1, 0.85, NA, 0.4, 0.75, 0.75, 0.65, NA, 0.55, 0.7, 0.45, 0.55,
NA, 0.55, 0.8, 0.65, 0.75, 0.75, 0.85, 0.7, NA, 0.4, 1, 1, 0.85,
0.15, 0.3, 0.7, 0.45, 0.7, 0.65, 1, 0.65, 1, 1, 0.15, 0.8, 0.7,
0.9, 0.7, 0.65, NA, 0.7, NA, 0.4, 1, NA, 0.65, 0.8, 0.45, 0.45,
0.95, 0.6, 0.45, 0.8, 1, 0.25, 0.7, 0.45, 1, 0.65, 0.55, 0.6,
0.35, 1, 0.9, 0.45, 0.6, 0.6, 0.55, 0.95, 0.15, 0.6, 0.75, 0.85,
0.7, 0.95, 0.7, 0.65, 0.5, 0.35, 0.75, 0.15, 0.65, 0.65, 0.8,
1, 1, 1, 0.75, 0.65, 0.6, 0.55, 0.55, 0.75, 0.4, 0.45, 0.65,
0.7, 0.95, 0.65, 0.95, 0.45, 0.7, 0.75, 0.35, NA, 0.65, 0.8,
0.6, 0.3, 0.75, 0.5, 0.35, 0.55, 0.6, 0.7, 0.6, 0.65, 0.7, 1,
0.6, 0.45, 1, 0.55, 0.75, 0.75, NA, NA, 0.5, 0.6, 0.85, 0.45,
0.5, 0.85, 0.7, 1, 0.55, 0.6, 0.7, 0.5, 0.75, 0.45, 0.8, 0.75,
0.4, 0.65, 0.6, 0.95, 1, NA, 0.45, 0.75, 1, 0.45, 0.7, NA, 0.4,
0.6, 0.4, 0.6, 0.8, 0.65, 0.75, 0.95, 0.75, 0.65, 0.45, 0.45,
0.55, 0.9, 0.9, 0.4, 0.85, 0.8, 0.55, 0.65, 0.4, 0.75, 0.6, 0.65,
0.95, 0.5, 0.45, 0.4, 0.75, 0.7, 1, 0.7, 0.7, 0.55, 0.65, 0.7,
0.7, NA, 0.5, 1, 0.95, 0.65, NA, 1, 0.4, 1, 0.85, NA, 0.8, 0.8,
0.25, 0.4, 0.65, 1, 0.9, 0.3, 0.7, 0.9, 0.4, NA, 0.4, 0.65, 0,
0.7, 0.9, 0.45, 0.55, 0.8, 0.5)), row.names = c(25776L, 9883L,
14041L, 5611L, 22007L, 25846L, 16732L, 17101L, 18989L, 23931L,
13843L, 8120L, 4304L, 11219L, 20436L, 4213L, 25803L, 17008L,
22524L, 16902L, 11937L, 20334L, 25945L, 713L, 22981L, 11148L,
22172L, 4761L, 26400L, 28182L, 21974L, 7025L, 26236L, 24594L,
7006L, 5875L, 7099L, 7076L, 987L, 5292L, 9580L, 21524L, 18910L,
15589L, 1395L, 396L, 23028L, 5460L, 1677L, 20756L, 4030L, 20963L,
4147L, 10366L, 15579L, 5604L, 20757L, 18622L, 18520L, 181L, 12684L,
12018L, 16444L, 12959L, 174L, 5112L, 1510L, 24194L, 28212L, 15236L,
15035L, 10299L, 350L, 11542L, 14391L, 3111L, 27182L, 1175L, 25462L,
24821L, 781L, 16539L, 9227L, 8742L, 15407L, 1257L, 29105L, 9847L,
8254L, 18009L, 18087L, 18900L, 17950L, 4945L, 1199L, 24757L,
13189L, 4566L, 28838L, 14753L, 24511L, 11321L, 1854L, 17271L,
6938L, 22290L, 23881L, 27807L, 20224L, 4938L, 19842L, 14600L,
1052L, 3255L, 11097L, 12199L, 15943L, 24905L, 28863L, 11976L,
1298L, 22362L, 13461L, 15981L, 9774L, 7598L, 12302L, 25629L,
18174L, 1507L, 905L, 17480L, 21648L, 3064L, 23853L, 22575L, 18898L,
13000L, 18601L, 12045L, 20107L, 29027L, 11474L, 398L, 8107L,
17323L, 1409L, 10104L, 22253L, 20667L, 19441L, 19954L, 11678L,
2431L, 26100L, 28725L, 26039L, 18725L, 27321L, 18318L, 4469L,
5524L, 21551L, 13950L, 26283L, 23438L, 24770L, 19145L, 13754L,
23201L, 1612L, 20522L, 24957L, 17331L, 22987L, 13578L, 1741L,
12408L, 29216L, 10117L, 24389L, 8860L, 12411L, 23315L, 11832L,
20603L, 25148L, 8129L, 22913L, 18907L, 13985L, 13326L, 24937L,
27725L, 6973L, 3903L, 2172L, 3050L, 14845L, 13276L, 19077L, 15140L,
5020L, 11054L, 12811L, 25156L, 14616L, 11405L, 24402L, 16851L,
29059L, 8147L, 12119L, 21768L, 29215L, 17034L, 18931L, 686L,
14576L, 20038L, 17920L, 11885L, 25069L, 14009L, 24038L, 24033L,
5499L, 23488L, 11515L, 13887L, 16442L, 24373L, 16790L, 27775L,
27396L, 14801L, 25427L, 4453L, 6867L, 8051L, 18490L, 11960L,
26835L, 19049L, 3440L, 4947L, 28778L, 29907L, 22719L, 11634L,
14411L, 3699L, 18091L, 20109L, 13504L, 12999L, 25999L, 411L,
29733L, 28436L, 22242L, 15309L, 29297L, 19319L, 5003L, 11813L,
4641L, 15703L, 4675L, 12678L, 2188L, 15183L, 28955L, 10999L,
803L, 29527L, 29075L, 10859L, 1717L, 23750L, 7087L, 14365L, 17298L,
743L, 1995L, 2848L, 27852L, 27842L, 26375L, 15756L, 8066L, 9023L,
9709L, 11402L, 21550L, 9045L, 11565L, 24899L, 6519L, 29764L,
18850L, 21811L, 26849L, 17332L, 13983L, 16874L, 22737L, 14157L,
19521L, 14644L, 24043L, 12528L, 17725L, 28467L, 8780L, 22677L,
662L, 29426L, 18580L, 27387L, 26181L, 11818L, 21369L, 2146L,
11899L, 7647L, 5355L, 22035L, 23597L, 18765L, 3843L, 7933L, 17075L,
15295L, 9425L, 15627L, 24643L, 25227L, 20738L, 27431L, 6224L,
13477L, 6764L, 1839L, 15940L, 20678L, 26727L, 24994L, 2758L,
21388L, 13890L, 13707L, 6325L, 6097L, 12346L, 1021L, 23831L,
29207L, 14115L, 23016L, 20617L, 13581L, 10018L, 21301L, 23097L,
16403L, 6855L, 29394L, 11908L, 24199L, 10757L, 20806L, 13506L,
1611L, 4342L, 28961L, 9394L, 25480L, 22062L, 10451L, 16575L,
21276L, 366L, 16670L, 2065L, 28017L, 29776L, 591L, 4772L, 24037L,
1036L, 21428L, 16408L, 20076L, 7859L, 11658L, 10051L, 11622L,
7170L, 18164L, 13614L, 12534L, 7996L, 8722L, 25083L, 11373L,
4430L, 23681L, 21785L, 5864L, 22006L, 8638L, 4392L, 2217L, 21512L,
19383L, 16687L, 2637L, 20255L, 13541L, 2052L, 26547L, 7329L,
27505L, 24571L, 12668L, 25087L, 13284L, 28910L, 26177L, 6684L,
7227L, 11017L, 8283L, 4005L, 12507L, 25100L, 25683L, 4602L, 16185L,
3153L, 15349L, 29741L, 26322L, 10257L, 29080L, 12497L, 27170L,
17997L, 16148L, 2272L, 3574L, 20869L, 23485L, 6183L, 18151L,
15018L, 9175L, 22441L, 6178L, 20019L, 14213L, 26524L, 27504L,
27969L, 7810L, 23893L, 1636L, 27235L, 2938L, 14232L, 11912L,
10737L, 3913L, 28772L, 12063L, 711L, 25143L, 16379L, 27588L,
19462L, 27813L, 20968L, 6451L, 19720L, 18528L, 21823L, 12234L,
17158L, 27989L, 2350L, 9938L, 24070L, 3938L, 22636L, 25092L,
8985L, 17361L, 3052L, 4120L, 23526L, 15741L, 16847L, 28218L,
4408L, 3968L, 19739L, 6970L, 24603L, 26655L, 25708L, 23337L,
11858L, 3581L, 12564L, 23901L, 29505L, 22631L, 9191L, 14130L,
6246L, 16434L, 26417L, 14992L, 21482L, 26301L, 11996L, 13214L,
24536L, 2278L, 16492L, 5887L, 1400L, 6317L, 23705L, 26229L, 10526L,
12671L, 5104L, 6210L, 28610L, 10666L, 14423L, 11825L, 25032L,
11687L, 5787L, 19266L, 8L, 23411L, 19493L, 16889L, 8179L, 15315L,
12430L, 4894L, 26830L, 7400L, 14338L, 10688L, 6488L, 19220L,
2282L, 12432L, 3395L, 6059L, 14022L, 28471L, 2041L, 19991L, 10921L,
13692L, 28283L, 23614L, 27214L, 18820L, 20989L, 28818L, 13357L,
15852L, 17940L, 3393L, 11000L, 29533L, 1668L, 19934L, 24222L,
1647L, 19328L, 9763L, 10936L, 19366L, 22798L, 26764L, 19259L,
13038L, 1525L, 24333L, 9486L, 15272L, 76L, 16970L, 18426L, 8726L,
18245L, 19386L, 19868L, 17581L, 18733L, 23334L, 1850L, 2649L,
4573L, 18125L, 11494L, 3819L, 11045L, 23084L, 9904L, 16400L,
14034L, 23417L, 18342L, 28713L, 7028L, 648L, 17565L, 20720L,
16671L, 24035L, 8480L, 1014L, 6549L, 17551L, 21678L, 25418L,
6852L, 1207L, 15544L, 20489L, 11947L, 19380L, 18470L, 16487L,
29211L, 18666L, 10884L, 22188L, 15084L, 13789L, 18478L, 29465L,
24294L, 24893L, 14965L, 8616L, 20852L, 22140L, 20734L, 21287L,
29314L, 26460L, 14285L, 9250L, 2044L, 19476L, 24301L, 6751L,
5630L, 26321L, 24733L, 1367L, 17525L, 2843L, 12710L, 12298L,
29623L, 6702L, 9545L, 14036L, 29233L, 7115L, 25006L, 9062L, 15304L,
25235L, 3140L, 3663L, 17279L, 15459L, 1905L, 3189L, 1745L, 30000L,
11827L, 21631L, 19863L, 2390L, 28900L, 10087L, 26057L, 21496L,
13623L, 4368L, 5082L, 4885L, 3431L, 11465L, 10107L, 20700L, 18649L,
14158L, 6687L, 23778L, 22756L, 8050L, 2692L, 14523L, 25198L,
8989L, 20258L, 1897L, 1006L, 13846L, 4075L, 24211L, 27187L, 19338L,
24082L, 9961L, 11117L, 16893L, 24635L, 17017L, 16534L, 11919L,
970L, 15365L, 4424L, 19222L, 8358L, 12203L, 16664L, 12413L, 2507L,
21586L, 28693L, 25489L, 18578L, 22879L, 21253L, 8360L, 28719L,
26092L, 2005L, 18568L, 1174L, 14507L, 2109L, 24305L, 17978L,
23598L, 14732L, 21507L, 1981L, 24144L, 29212L, 15270L, 29723L,
9737L, 11241L, 6343L, 1934L, 13705L, 25268L, 23296L, 11792L,
4224L, 24547L, 12776L, 12286L, 6813L, 2107L, 5537L, 24653L, 1133L,
11359L, 3890L, 22243L, 5821L, 13773L, 27903L, 8486L, 28047L,
27353L, 18359L, 22978L, 20785L, 27816L, 16666L, 749L, 2313L,
18543L, 23900L, 17503L, 26255L, 12986L, 20834L, 26589L, 15022L,
28727L, 6874L, 28685L, 18169L, 14566L, 11477L, 5616L, 26810L,
3235L, 26160L, 11283L, 21049L, 8992L, 2250L, 1229L, 27877L, 23639L,
443L, 22934L, 26882L, 801L, 1697L, 4760L, 15032L, 13700L, 19286L,
11703L, 4329L, 27067L, 11773L, 1013L, 5742L, 8298L, 1713L, 16257L,
15014L, 4282L, 11663L, 28203L, 7495L, 27623L, 9556L, 8602L, 3458L,
19672L, 16786L, 16615L, 3070L, 9978L, 10774L, 27889L, 21425L,
26888L, 12942L, 29902L, 18799L, 19979L, 15698L, 28740L, 3484L,
18980L, 23151L, 7404L, 20241L, 9048L, 9032L, 16532L, 29471L,
29419L, 18410L, 11855L, 5740L, 29351L, 22986L, 3282L, 29439L,
3257L, 3438L, 19364L, 19889L, 17136L, 790L, 15789L, 13187L, 27627L,
8799L, 1377L, 22489L, 3035L, 29243L, 5451L, 21638L, 11730L, 5029L,
5439L, 11892L, 1930L, 16285L, 14355L, 5590L, 22003L, 12415L,
15009L, 29530L, 9999L, 28878L, 17322L, 8556L, 8293L, 19456L,
691L, 2007L, 20229L, 25769L, 5608L, 19819L, 28934L, 25523L, 17373L,
13251L, 27625L, 3459L, 19935L, 18375L, 6273L, 29899L, 23116L,
8289L, 20144L, 13354L, 7003L, 18571L, 19371L, 8605L, 11245L,
9574L, 775L, 29129L, 14417L, 22875L, 28510L, 18360L, 13232L,
3785L, 3034L, 27847L, 18392L, 4923L, 18932L, 29911L, 23165L,
25872L, 9895L, 6676L, 18974L, 23113L, 6633L, 24026L, 28476L,
4775L, 22418L, 27449L, 8952L, 20317L, 21498L, 15025L, 25670L,
13525L, 26601L, 12151L, 28846L, 15553L, 1519L, 10572L, 20494L,
28531L, 17247L, 15876L, 29378L, 19052L, 21807L, 18781L, 6048L,
15075L, 29971L, 22713L, 50L, 680L, 11341L, 18872L), class = "data.frame")
>
Try something like this:
library(tidyverse)
df2 <- df %>%
group_by(Voter_Partisanship, Population, Public_Issues) %>%
summarise(mean = mean(value, na.rm = T),
sd = sd(value, na.rm = T)) %>%
pivot_wider(id_cols = c(Population,Voter_Partisanship),
names_from = c(Public_Issues),
values_from = c(mean, sd))