mongodbperformancequery-optimizationdatabase-performance

MongoDB index and query strategy to fetch a record within range bounded by two fields


Our IP address ranges table has ~2.8 million records, of the following structure:

{
  start_ip: integer,    // IPv4 converted to int32
  end_ip: integer,      // IPv4 converted to int32
  country_code: string,
  country: string,
  region: string,
  city: string
}

There is a compound index on start_ip and end_ip:

{ start_ip: 1, end_ip: 1 }

To get records from the table (read: to know what range the given IP belongs to) we use this query:

{"start_ip"=>{"$lte"=>3284004939}, "end_ip"=>{"$gte"=>3284004939}}

However we observe an unacceptably low performance of the query. Here is the explain example:

{
  "explainVersion": "2",
  "queryPlanner": {
    "namespace": "restclass_development.ip_ranges",
    "indexFilterSet": false,
    "parsedQuery": {
      "$and": [
        {
          "start_ip": {
            "$lte": 3284004939
          }
        },
        {
          "end_ip": {
            "$gte": 3284004939
          }
        }
      ]
    },
    "queryHash": "379E557D",
    "planCacheKey": "E1838ADA",
    "maxIndexedOrSolutionsReached": false,
    "maxIndexedAndSolutionsReached": false,
    "maxScansToExplodeReached": false,
    "winningPlan": {
      "queryPlan": {
        "stage": "FETCH",
        "planNodeId": 2,
        "inputStage": {
          "stage": "IXSCAN",
          "planNodeId": 1,
          "keyPattern": {
            "start_ip": 1,
            "end_ip": 1
          },
          "indexName": "start_ip_1_end_ip_1",
          "isMultiKey": false,
          "multiKeyPaths": {
            "start_ip": [],
            "end_ip": []
          },
          "isUnique": false,
          "isSparse": false,
          "isPartial": false,
          "indexVersion": 2,
          "direction": "forward",
          "indexBounds": {
            "start_ip": [
              "[-inf.0, 3284004939]"
            ],
            "end_ip": [
              "[3284004939, inf.0]"
            ]
          }
        }
      },
      "slotBasedPlan": {
        "slots": "$$RESULT=s25 env: { s9 = {\"start_ip\" : 1, \"end_ip\" : 1}, s5 = IndexBounds(\"field #0['start_ip']: [-inf.0, 3284004939], field #1['end_ip']: [3284004939, inf.0]\"), s3 = 1699191077268 (NOW), s24 = true, s1 = TimeZoneDatabase(Africa/Ceuta...Etc/GMT-12) (timeZoneDB), s2 = Nothing (SEARCH_META), s13 = Nothing }",
        "stages": "[2] nlj inner [] [s19, s20, s21, s22, s23] \n    left \n        [1] branch {s24} [s19, s20, s21, s22, s23] \n        [s4, s6, s7, s8, s9] [1] ixscan_generic s5 s8 s4 s6 s7 lowPriority [] @\"99a3fa22-8459-4875-bbc9-3cf3ee9afc55\" @\"start_ip_1_end_ip_1\" true \n        [s10, s16, s17, s18, s9] [1] nlj inner [] [s11, s12] \n            left \n                [1] project [s11 = getField(s14, \"l\"), s12 = getField(s14, \"h\")] \n                [1] unwind s14 s15 s13 false \n                [1] limit 1 \n                [1] coscan \n            right \n                [1] ixseek s11 s12 s18 s10 s16 s17 [] @\"99a3fa22-8459-4875-bbc9-3cf3ee9afc55\" @\"start_ip_1_end_ip_1\" true \n    right \n        [2] limit 1 \n        [2] seek s19 s25 s26 s20 s21 s22 s23 [] @\"99a3fa22-8459-4875-bbc9-3cf3ee9afc55\" true false \n"
      }
    },
    "rejectedPlans": []
  },
  "executionStats": {
    "executionSuccess": true,
    "nReturned": 1,
    "executionTimeMillis": 1276,
    "totalKeysExamined": 2422998,
    "totalDocsExamined": 1,
    "executionStages": {
      "stage": "nlj",
      "planNodeId": 2,
      "nReturned": 1,
      "executionTimeMillisEstimate": 1276,
      "opens": 1,
      "closes": 1,
      "saveState": 1,
      "restoreState": 1,
      "isEOF": 1,
      "totalDocsExamined": 1,
      "totalKeysExamined": 2422998,
      "collectionScans": 0,
      "collectionSeeks": 1,
      "indexScans": 0,
      "indexSeeks": 1,
      "indexesUsed": [
        "start_ip_1_end_ip_1",
        "start_ip_1_end_ip_1"
      ],
      "innerOpens": 1,
      "innerCloses": 1,
      "outerProjects": [],
      "outerCorrelated": [
        19,
        20,
        21,
        22,
        23
      ],
      "outerStage": {
        "stage": "branch",
        "planNodeId": 1,
        "nReturned": 1,
        "executionTimeMillisEstimate": 1276,
        "opens": 1,
        "closes": 1,
        "saveState": 1,
        "restoreState": 1,
        "isEOF": 1,
        "numTested": 1,
        "thenBranchOpens": 1,
        "thenBranchCloses": 1,
        "elseBranchOpens": 0,
        "elseBranchCloses": 0,
        "filter": "s24 ",
        "thenSlots": [
          4,
          6,
          7,
          8,
          9
        ],
        "elseSlots": [
          10,
          16,
          17,
          18,
          9
        ],
        "outputSlots": [
          19,
          20,
          21,
          22,
          23
        ],
        "thenStage": {
          "stage": "ixscan_generic",
          "planNodeId": 1,
          "nReturned": 1,
          "executionTimeMillisEstimate": 1276,
          "opens": 1,
          "closes": 1,
          "saveState": 1,
          "restoreState": 1,
          "isEOF": 1,
          "indexName": "start_ip_1_end_ip_1",
          "keysExamined": 2422998,
          "seeks": 2422997,
          "numReads": 2422998,
          "indexKeySlot": 8,
          "recordIdSlot": 4,
          "snapshotIdSlot": 6,
          "indexIdentSlot": 7,
          "outputSlots": [],
          "indexKeysToInclude": "00000000000000000000000000000000"
        },
        "elseStage": {
          "stage": "nlj",
          "planNodeId": 1,
          "nReturned": 0,
          "executionTimeMillisEstimate": 0,
          "opens": 0,
          "closes": 0,
          "saveState": 1,
          "restoreState": 1,
          "isEOF": 0,
          "totalDocsExamined": 0,
          "totalKeysExamined": 0,
          "collectionScans": 0,
          "collectionSeeks": 0,
          "indexScans": 0,
          "indexSeeks": 0,
          "indexesUsed": [
            "start_ip_1_end_ip_1"
          ],
          "innerOpens": 0,
          "innerCloses": 0,
          "outerProjects": [],
          "outerCorrelated": [
            11,
            12
          ],
          "outerStage": {
            "stage": "project",
            "planNodeId": 1,
            "nReturned": 0,
            "executionTimeMillisEstimate": 0,
            "opens": 0,
            "closes": 0,
            "saveState": 1,
            "restoreState": 1,
            "isEOF": 0,
            "projections": {
              "11": "getField(s14, \"l\") ",
              "12": "getField(s14, \"h\") "
            },
            "inputStage": {
              "stage": "unwind",
              "planNodeId": 1,
              "nReturned": 0,
              "executionTimeMillisEstimate": 0,
              "opens": 0,
              "closes": 0,
              "saveState": 1,
              "restoreState": 1,
              "isEOF": 0,
              "inputSlot": 13,
              "outSlot": 14,
              "outIndexSlot": 15,
              "preserveNullAndEmptyArrays": 0,
              "inputStage": {
                "stage": "limit",
                "planNodeId": 1,
                "nReturned": 0,
                "executionTimeMillisEstimate": 0,
                "opens": 0,
                "closes": 0,
                "saveState": 1,
                "restoreState": 1,
                "isEOF": 0,
                "limit": 1,
                "inputStage": {
                  "stage": "coscan",
                  "planNodeId": 1,
                  "nReturned": 0,
                  "executionTimeMillisEstimate": 0,
                  "opens": 0,
                  "closes": 0,
                  "saveState": 1,
                  "restoreState": 1,
                  "isEOF": 0
                }
              }
            }
          },
          "innerStage": {
            "stage": "ixseek",
            "planNodeId": 1,
            "nReturned": 0,
            "executionTimeMillisEstimate": 0,
            "opens": 0,
            "closes": 0,
            "saveState": 1,
            "restoreState": 1,
            "isEOF": 0,
            "indexName": "start_ip_1_end_ip_1",
            "keysExamined": 0,
            "seeks": 0,
            "numReads": 0,
            "indexKeySlot": 18,
            "recordIdSlot": 10,
            "snapshotIdSlot": 16,
            "indexIdentSlot": 17,
            "outputSlots": [],
            "indexKeysToInclude": "00000000000000000000000000000000",
            "seekKeyLow": "s11 ",
            "seekKeyHigh": "s12 "
          }
        }
      },
      "innerStage": {
        "stage": "limit",
        "planNodeId": 2,
        "nReturned": 1,
        "executionTimeMillisEstimate": 0,
        "opens": 1,
        "closes": 1,
        "saveState": 1,
        "restoreState": 1,
        "isEOF": 1,
        "limit": 1,
        "inputStage": {
          "stage": "seek",
          "planNodeId": 2,
          "nReturned": 1,
          "executionTimeMillisEstimate": 0,
          "opens": 1,
          "closes": 1,
          "saveState": 1,
          "restoreState": 1,
          "isEOF": 0,
          "numReads": 1,
          "recordSlot": 25,
          "recordIdSlot": 26,
          "seekKeySlot": 19,
          "snapshotIdSlot": 20,
          "indexIdentSlot": 21,
          "indexKeySlot": 22,
          "indexKeyPatternSlot": 23,
          "fields": [],
          "outputSlots": []
        }
      }
    },
    "allPlansExecution": []
  },
  "command": {
    "find": "ip_ranges",
    "filter": {
      "start_ip": {
        "$lte": 3284004939
      },
      "end_ip": {
        "$gte": 3284004939
      }
    },
    "$db": "restclass_development"
  },
  "serverInfo": {
    "host": "sun.arg.network",
    "port": 27017,
    "version": "7.0.2",
    "gitVersion": "02b3c655e1302209ef046da6ba3ef6749dd0b62a"
  },
  "serverParameters": {
    "internalQueryFacetBufferSizeBytes": 104857600,
    "internalQueryFacetMaxOutputDocSizeBytes": 104857600,
    "internalLookupStageIntermediateDocumentMaxSizeBytes": 104857600,
    "internalDocumentSourceGroupMaxMemoryBytes": 104857600,
    "internalQueryMaxBlockingSortMemoryUsageBytes": 104857600,
    "internalQueryProhibitBlockingMergeOnMongoS": 0,
    "internalQueryMaxAddToSetBytes": 104857600,
    "internalDocumentSourceSetWindowFieldsMaxMemoryBytes": 104857600,
    "internalQueryFrameworkControl": "trySbeEngine"
  },
  "ok": 1
}

This query is executed in ~1.5 seconds. What would be a more time efficient query and/or indexing strategy for our use case?


Solution

  • NOTE: This is a non-orthodox approach to solving the problem.

    First, acknowledgements to John Page (https://www.mongodb.com/developer/author/john-page), one of the all-time MongoDB greats, for first exploring this approach.

    Often we encounter data range challenges in our data design and querying. The OP has approached this in the traditional way: create two fields, start_THING and end_THING, set up a compound key on the fields, and use start_THING $lte target and end_THING $gte target to quickly find one doc. Or, to find things in a range, start_THING $gte lowerBound and end_THING $lt upperBound.

    Another way to do this is by using a single geospatial field with a 2dsphere index on it. Here's how this approach would work in the context of the OP data:

        geo_start = ((168028160 / 4294967295) * (180 - (-180))) + (-180);
        geo_end = ((168028165 / 4294967295) * (180 - (-180))) + (-180);
    
        geo: { type: "LineString", coordinates: [ [ geo_start, 0.0 ], [geo_end, 0.0 ] ] }
    

    Here is an example of a data record fully populated:

    {
      _id: ObjectId("6549055e795d8927e4779193"),
      N: 1000,
      start_ip: '10.3.232.0',
      end_ip: '10.3.232.5',
      int_start_ip: 168028160,
      int_end_ip: 168028165,
      geo: {
        type: 'LineString',
        coordinates: [ [ -165.91604232460168, 0 ], [ -165.91604190550652, 0 ] ]
      },
      country_code: 'XXX',
      country: 'Xland',
      region: 'Mars',
      city: 'Foo'
    }
    
        db.foo.createIndex({geo:"2dsphere"})  
    
        function convertToGeo(sip) {
            q = sip.split('.');
    
            var iip = 0;
            for(var n = 0; n < 4; n++) {
                iip += (parseInt(q[n]) * (256 ** (3 - n)));
            }
            return ((iip / new NumberLong("4294967295")) * 360 ) - 180 ;
        }
    
        var gsip = convertToGeo('10.232.0.3'); // .3 is in between .0 and .5; see data record above
        var xx = db.foo.findOne({
            geo: {
                $geoIntersects: {
                    $geometry: { type: "LineString",
                         // Must create a second discrete point for a line, so make it 0.1
                         coordinates: [ [ gsip, 0.0 ], gsip, 0.1 ] ] }
                }
            }
        };
        // The doc above is found!
    

    Sampling 100 random IPs in a population of 3m items show the single geo index approach working much faster than the compound index approach, typically taking no more than 1 millisecond:

    100 samples of GEO approach:
    {
      count: 100,
      execMillis_min: 0,
      execMillis_max: 1,
      execMillis_tot: 16,
      execMillis_avg: 0,
      totKeysExamined_min: 296,
      totKeysExamined_max: 648,
      totKeysExamined_tot: 48327,
      totKeysExamined_avg: 3.744628643254086,
      totDocsExamined_min: 222,
      totDocsExamined_max: 556,
      totDocsExamined_tot: 39977,
      totDocsExamined_avg: 2.806450990888347
    }
    One of the explains:
    {
      explainVersion: '1',
      queryPlanner: {
      ...
          inputStage: {
            stage: 'IXSCAN',
            keyPattern: { geo: '2dsphere' },
            indexName: 'geo_2dsphere',
    
      executionStats: {
        executionSuccess: true,
        nReturned: 1,
        executionTimeMillis: 1,
        totalKeysExamined: 353,
        totalDocsExamined: 266,
            keysExamined: 353,
            seeks: 21,
            dupsTested: 332,
            dupsDropped: 66
          }
        },
     ...
    }
    
    100 samples of COMPOUND start/end approach:
    {
      count: 100,
      execMillis_min: 48,
      execMillis_max: 1360,
      execMillis_tot: 63096,
      execMillis_avg: 630.96,
      totKeysExamined_min: 10000,
      totKeysExamined_max: 2859339,
      totKeysExamined_tot: 137167079,
      totKeysExamined_avg: 19980.70323149996,
      totDocsExamined_min: 1,
      totDocsExamined_max: 1,
      totDocsExamined_tot: 100,
      totDocsExamined_avg: 0.010102051554122065
    }
    
    One of the explains:
    {
      explainVersion: '1',
      queryPlanner: {
          inputStage: {
            stage: 'IXSCAN',
            keyPattern: {
              int_start_ip: 1,
              int_end_ip: 1
            },
            indexName: 'int_start_ip_1_int_end_ip_1',
      ...
      executionStats: {
        executionSuccess: true,
        nReturned: 1,
        executionTimeMillis: 1051,
        totalKeysExamined: 2311153,
        totalDocsExamined: 1,
            keysExamined: 2311153,
            seeks: 2311152,
            dupsTested: 0,
            dupsDropped: 0
    }
    
    

    Some more tests now in tabular form. The 2dsphere index strategy clearly benefits when looking up material "further down" the range of values:

      db.foo.find({int_start_ip:{$lte:int_target}, int_end_ip:{$gte:int_target}}).explain(true);               
                                                                                                       
          N  totMS   keysExam docsExam  seeks                                                          
          2      0         4       1        3                                                          
     500000    235    500002       1   500001                                                          
    3000000   1322   3000002       1  3000001                                                          
    5000000   2301   5000002       1  5000001                                                          
    9999999   4710  10000000       1 10000000                                                          
                                                                                                       
                                                                                                       
    db.foo.find({geo: {'$geoIntersects': {'$geometry': {                                               
                          type: 'LineString',                                                          
                          coordinates: [ [ geo_target,0 ], [ geo_target,0.1 ] ]                                
                          }}}}).explain(true);   
                                                                        
          N  totMS   keysExam docsExam  seeks                                                                                                                                                             
          2      1       200     130        8                                                          
     500000      1       256     276       11                                                          
    3000000      3       621     530       23                                                          
    5000000      2       621     533       13                                                          
    9999999      0        39      15        9