I've created a plot and need to add a threshold line to it:
BlinkRep <- ggplot(data = BlinkRes, aes(x = well, y = FluoCont, fill = Validity))+
geom_point(position = position_jitter(), shape = 21)+
scale_fill_manual(values = scalecols1,
breaks = scalebreaks1,
labels = scalelabs1)+
ylab("Fluorescence Signal")+
xlab("Well")+
theme_light()+
theme(axis.title.y = element_text(size = 16, family = "sans"),
legend.text = element_text(size = 16, family = "sans"),
axis.text.x = element_text(colour ="black", size = 16, family = "sans"),
axis.text.y = element_text(colour ="black", size = 16, family = "sans"),
axis.title.x = element_text(colour = "black", size = 16, family = "sans"),
legend.title = element_text(size = 16, family = "sans"),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
plot.title = element_text(size = 10, hjust = 0.5))+
geom_hline(yintercept = univthreshold, colour ="red", linetype="dashed", linewidth = 1)+
guides(fill=guide_legend(title="Bead Validity"))
BlinkRep
ggsave("Results/RepResults.png", plot = BlinkRep, dpi = 500, height = 7, units = "in", width = 14)
Currently the threshold I have added is an average that I have calculated from all the wells, however each well has its own threshold. The thresholds are in a separate dataframe:
> head(repthresh)
WGR Bead.Type Bead.Type.Name Well Channel Analyte Lambda..cp.Bead. Lambda.95..CI..cp.Bead. Copies.in.Sample..cp.
2 WGR_1 1 Analyte_1_Analyte_2 A1 CH1 Analyte_1 0.66530 [0.63378, 0.69682] 19959
3 WGR_1 1 Analyte_1_Analyte_2 A2 CH1 Analyte_1 0.70457 [0.67046, 0.73868] 21137
4 WGR_1 1 Analyte_1_Analyte_2 A3 CH1 Analyte_1 0.70375 [0.67165, 0.73585] 21112
6 WGR_2 1 Analyte_1_Analyte_2 B1 CH1 Analyte_1 2.22466 [2.13628, 2.31304] 66740
7 WGR_2 1 Analyte_1_Analyte_2 B2 CH1 Analyte_1 2.14401 [2.0596, 2.22842] 64320
8 WGR_2 1 Analyte_1_Analyte_2 B3 CH1 Analyte_1 2.23120 [2.14231, 2.32009] 66936
Analyte.Concentration..cp.ml. Recovery.Rate.... Total.Beads.per.Bead.Type Valid.Beads Negative.Beads Positive.Beads Negative.Valid.Beads
2 3991800 NaN 30000 3637 1874 1763 0.51526
3 4227400 NaN 30000 3354 1664 1690 0.49612
4 4222400 NaN 30000 3772 1875 1897 0.49708
6 13348000 NaN 30000 3918 437 3481 0.11154
7 12864000 NaN 30000 4062 476 3586 0.11718
8 13387200 NaN 30000 4041 434 3607 0.10740
Fluorescence.Threshold..AU. Positive.Negative.Fluorescence..Lift. Mean.Bead.Width..µm. Mean.Core.Width..µm. Sample Notes
2 11.7 2.62 86.1 43.3 HIV-1 NA
3 11.7 2.88 85.3 42.5 HIV-1 NA
4 11.7 2.59 88.0 42.3 HIV-1 NA
6 10.6 4.09 88.8 42.9 CD3 NA
7 10.6 3.94 88.6 42.0 CD3 NA
8 10.6 4.19 88.7 42.9 CD3 NA
Basically I want to individual threshold lines instead of the average line I have so it will look more like this:
Any thoughts on the best approach to this?
You cannot use geom_hline
here. I would use geom_errorbar
with the same ymin and ymax for each well. This gives a horizontal line across each well at the desired value:
ggplot(data = BlinkRes, aes(x = well, y = FluoCont, fill = Validity)) +
geom_point(position = position_jitter(), shape = 21) +
geom_errorbar(inherit.aes = FALSE, data = repthresh, linewidth = 1,
aes(x = well, ymax = Fluoresence.Threshold..AU.,
ymin = Fluoresence.Threshold..AU.)) +
scale_fill_manual(values = scalecols1,
breaks = scalebreaks1,
labels = scalelabs1) +
ylab("Fluorescence Signal") +
xlab("Well") +
theme_light() +
theme(axis.title.y = element_text(size = 16, family = "sans"),
legend.text = element_text(size = 16, family = "sans"),
axis.text.x = element_text(colour ="black", size = 16, family = "sans"),
axis.text.y = element_text(colour ="black", size = 16, family = "sans"),
axis.title.x = element_text(colour = "black", size = 16, family = "sans"),
legend.title = element_text(size = 16, family = "sans"),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
plot.title = element_text(size = 10, hjust = 0.5)) +
guides(fill=guide_legend(title="Bead Validity"))
Data used - reverse engineered from image in question
set.seed(1)
BlinkRes <-
data.frame(well = rep(c('A1', 'A2', 'A3', 'B1', 'B2', 'B3'), each = 5000),
FluoCont = c(rnorm(1000, 7), rnorm(4000, 15,),
rnorm(1000, 7), rnorm(4000, 15),
rnorm(1000, 7), rnorm(4000, 15),
rnorm(1000, 5, 0.8), rnorm(4000, 20, 3),
rnorm(1000, 5, 0.8), rnorm(4000, 20, 3),
rnorm(1000, 5, 0.8), rnorm(4000, 20, 3)),
Validity = c(rep('Invalid', 1000),
sample(c('HIV-1 Valid', 'Invalid'), 4000, prob = c(0.9, 0.1), TRUE),
rep('Invalid', 1000),
sample(c('HIV-1 Valid', 'Invalid'), 4000, prob = c(0.9, 0.1), TRUE),
rep('Invalid', 1000),
sample(c('HIV-1 Valid', 'Invalid'), 4000, prob = c(0.9, 0.1), TRUE),
rep('Invalid', 1000),
sample(c('CD3 Valid', 'Invalid'), 4000, prob = c(0.9, 0.1), TRUE),
rep('Invalid', 1000),
sample(c('CD3 Valid', 'Invalid'), 4000, prob = c(0.9, 0.1), TRUE),
rep('Invalid', 1000),
sample(c('CD3 Valid', 'Invalid'), 4000, prob = c(0.9, 0.1), TRUE)))
scalecols1 <- c(`CD3 Valid` = '#db9aa8', `HIV-1 Valid` = '#92edf7',
Invalid = '#8a8a8a')
scalebreaks1 <- c('HIV-1 Valid', 'CD3 Valid')
scalelabs1 <- c('HIV-1 Valid', 'CD3 Valid')
repthresh <- data.frame(well = c('A1', 'A2', 'A3', 'B1', 'B2', 'B3'),
Fluoresence.Threshold..AU. = rep(c(11.7, 10.6), each = 3))