I have incoming data that I want to store on disk in a database or something. The data looks something like this
incoming_data <- function(ncol=5){
dat <- sample(1:10,100,replace = T) |> matrix(ncol = ncol) |> as.data.frame()
random_names <- sapply(1:ncol(dat),\(x) paste0(sample(letters,1), sample(1:100,1)))
colnames(dat) <- random_names
dat
}
incoming_data()
This incoming_data
is just for example..
In reality, one incoming_data
set will have several 5k rows
and about 50k columns
. And the entire final file will be about 200-400 gigabytes
My question is how to add new data as columns to the database without loading the file into RAM
# your way
path <- "D:\\R_scripts\\new\\duckdb\\data\\DB.duckdb"
library(duckdb)
con <- dbConnect(duckdb(), dbdir = path, read_only = FALSE)
# write one piece of data in DB
dbWriteTable(con, "my_dat", incoming_data())
#### how to make something like this ####
my_dat <- cbind("my_dat", incoming_data())
Assuming that the number of rows remains the same across incoming batches of data, you can use the positonal join
(here) to achieve what you want:
library(duckdb)
library(DBI)
library(purrr)
incoming_data <- function(ncol=5){
dat <- sample(1:10,100,replace = T) |> matrix(ncol = ncol) |> as.data.frame()
random_names <- sapply(1:ncol(dat),\(x) paste0(sample(letters,1), sample(1:100,1)))
colnames(dat) <- random_names
dat
}
# Generate batches of data of
data_to_join <- rep(list(incoming_data()), 5)
# let's create some files with data
tmp_dir <- tempdir()
data_dir <- paste0(tmp_dir, "/data")
dir.create(data_dir)
walk2(
data_to_join,
seq_len(length(data_to_join)),
\(x, i) ({
file_out <- paste0(data_dir, "/", i,".csv")
write.csv(x, file_out, row.names = FALSE, quote = FALSE)
})
)
csv_files <- list.files(data_dir, full.names = TRUE)
con <- dbConnect(duckdb(), read_only = FALSE)
# write first columns to duckdb instance
duckdb_read_csv(con, "my_dat", csv_files[1])
# Recursively add new columns by self joining with new columns from file.
walk(csv_files[-1],
\(file) ({
create_query <- sprintf(
"CREATE OR REPLACE TABLE my_dat AS SELECT * FROM my_dat positional join read_csv_auto('%s');",
file
)
dbSendQuery(con, create_query)
})
)
dbReadTable(con, "my_dat")
# Disconnect from connection
dbDisconnect(con, shutdown = TRUE)
For each new incoming batch of data you can run the create or replace statement
from above to bind the new columns to the existing data;
you can also adapt it to update the table with r objects:
# Generate batches of data of
data_to_join <- rep(list(incoming_data()), 5)
con <- dbConnect(duckdb(), read_only = FALSE)
# write first iteration
dbWriteTable(con, "my_dat", data_to_join[[1]])
# Recursively add new columns by self joining with new columns from each available data
walk(
data_to_join[-1],
\(x) ({
dbWriteTable(con, "tmp_tbl", x, overwrite = TRUE, temporary = TRUE)
dbSendQuery(
con,
"CREATE OR REPLACE TABLE my_dat AS SELECT * FROM my_dat positional join tmp_tbl;"
)
dbRemoveTable(con, "tmp_tbl")
})
)
dbReadTable(con, "my_dat")
# Disconnect from connection
dbDisconnect(con, shutdown = TRUE)
Regarding your question, on how to do this procedure without loading the file into memory: in my experience, loading directly the files into duckdb without loading them into R should be the best practice here, and will in principle avoid the problem.
You might need to open and shutdown a connection per loaded file, to avoid crashing the R session, but that might have been a weird issue I had locally and might not translate into a problem here.
I hope if finally helps :)