df = df['Consequence Number'].fillna("CLS" + df.index.astype(str))
I did try the above solution along with iterating rows
for index in priority_cls.iterrows():
if priority_cls['Consequence Number'].isna() == True:
priority_cls['Consequence Number'] = 'CLS00'+ str(priority_cls['ConsequenceNumber'].isnull().sum())
The error is as follows:
TypeError: "value" parameter must be a scalar, dict or Series, but you passed a "Index"
Convert your Index to_series
:
df['Consequence Number'].fillna("CLS" + df.index.to_series().astype(str))
Example:
df = pd.DataFrame({'Consequence Number': ['A', 'B', pd.NA, pd.NA]})
df['out'] = (df['Consequence Number']
.fillna("CLS" + df.index.to_series().astype(str))
)
Output:
Consequence Number out
0 A A
1 B B
2 <NA> CLS2
3 <NA> CLS3