Problem:
Given an array nums of n integers, return an array of all the unique quadruplets [nums[a], nums[b], nums[c], nums[d]] such that:
0 <= a, b, c, d < n
a, b, c, and d are distinct.
nums[a] + nums[b] + nums[c] + nums[d] == target
You may return the answer in any order.
Example 1:
Input: nums = [1,0,-1,0,-2,2], target = 0 Output: [[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
Example 2:
Input: nums = [2,2,2,2,2], target = 8
Output: [[2,2,2,2]]
Constraints:
1 <= nums.length <= 200
-109 <= nums[i] <= 109
-109 <= target <= 109
Algorithm:
target - num1 - num2 - num3
.
C code:
int partition (int *arr, int left, int right) {
int x = arr[right];
int i, j;
i = left - 1;
for (j = left; j < right; j++)
if (arr[j] <= x) {
int tmp = arr[++i];
arr[i] = arr[j];
arr[j] = tmp;
}
arr[right] = arr[++i];
arr[i] = x;
return i;
}
void quicksort (int *arr, int left, int right) {
if (left < right) {
int pivot = partition(arr, left, right);
quicksort(arr, left, pivot - 1);
quicksort(arr, pivot + 1, right);
}
}
int** fourSum(int* nums, int numsSize, int target, int* returnSize, int** returnColumnSizes) {
(*returnSize) = 0;
int **ans = NULL;
quicksort(nums, 0, numsSize - 1);
for (int i = 0; i < numsSize - 3; i++)
for (int j = i + 1; j < numsSize - 2; j++)
for (int k = j + 1; k < numsSize - 1; k++) {
int l = target - nums[i] - nums[j] - nums[k];
int left = k, mid, right = numsSize;
while (left < right ) {
mid = (left + right) / 2;
if (nums[mid] < l)
left = mid;
else if (nums[mid] == l) {
(*returnSize)++;
ans = realloc(ans, (*returnSize) * sizeof(int));
ans[*returnSize - 1][0] = nums[i];
ans[*returnSize - 1][1] = nums[j];
ans[*returnSize - 1][2] = nums[k];
ans[*returnSize - 1][3] = nums[l];
break;
}
else
right = mid;
}
}
*returnColumnSizes = malloc((*returnSize) * sizeof(int));
for (int i = 0; i < (*returnSize); i++)
(*returnColumnSizes)[i] = 4;
return ans;
}
I thought this is quite optimal solution, but it doesn't even pass time limit.
Small array size allows to create storage for n*(n-1)/2
pairs (~20000) of structures, containing sum of all possible pairs and corresponding indices
Sort structures by sum value
Then for every sum S
with i,j
indices look for pairs with target-S
and indices distinct from i,j
(scan sums from the left, corresponding sums from the right)
Overall complexity is O(n^2*log(n))
(Also it is possible to use hash table, but there is no in-built hash tables in C)