pythonpython-3.xplotlyeye-tracking

plotly: add rectangle with varying fill color


I have an eye tracking dataset consisting of four columns:

I want to plot the x and y coordinates over time, and add a rectangle on/under the figure with changing colors depending on the value of e.

Some example data:

t = np.arange(30)
x = np.array([125.9529, 124.6142, 125.0569, 125.3117, 126.7498, 127.035,125.4822, 125.6249, 126.9371, 127.6047, 129.031 , 128.2419, 121.521 , 114.7071, 109.4141, 100.5057,  94.9606,  95.2231, 95.9032,  96.4991, 101.2602, 103.9582, 108.2527, 108.8801, 110.3254, 112.8205, 113.0079, 113.3547, 113.0962, 113.2508])
y = np.array([31.218 , 31.236 , 31.147 , 31.2614, 30.806 , 30.8423, 31.727, 32.2256, 32.0504, 32.7774, 34.7089, 37.0671, 46.309 , 55.9716, 62.4481, 68.0248, 75.4912, 79.0622, 81.2176, 83.191 , 83.7656, 84.6713, 83.9343, 82.4546, 81.1652, 80.7981, 80.2136, 80.7405, 80.4398, 80.0738])
e = np.array([1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 3., 3., 3., 3., 3., 3., 4., 4., 4., 4.])

And my attempt at coding this:

import plotly.graph_objects as go
from plotly.subplots import make_subplots

fig = make_subplots()
fig.add_trace(ply.graph_objects.Line(x=t, y=x, name="X"),
              secondary_y=False, row=1, col=1)
fig.add_trace(ply.graph_objects.Line(x=t, y=y, name="Y"),
              secondary_y=False, row=1, col=1)
fig.add_shape(type="rect",
              x0=t[0], y0=0, x1=t[-1], y1=0.05 * np.max([x, y]),
              line=dict(color="black", width=2),
              fillcolor=e)

This raises a Value Error: Invalid value of type 'numpy.ndarray' received for the 'fillcolor' property of layout.shape


Solution

  • Following up on @EricLavault's answer, I'm attaching here the complete code for posterity:

    # create discrete color scale:
    colors = list('rgbako')
    possible_events = np.arange(6).astype(int)
    bounds = sorted(np.concatenate([possible_events, [len(possible_events)]]))
    norm_bounds = [(b - bounds[0]) / (bounds[-1] - bounds[0]) for b in bounds]
    
    d_colors = []
    for k in range(len(colors)):
      d_colors.extend([(norm_bounds[k], colors[k]), (norm_bounds[k], colors[k+1])])
    
    # assume you have t, x, y, e
    # create a figure with X- Y-coordinates over time, and overlay the event chart
    fig = make_subplots(specs=[[{"secondary_y": True}]])
    fig.add_trace(go.Scatter(x=t, y=x, mode="lines", line=dict(color='#ff0000', width=4), name="X"), secondary_y=False)
    fig.add_trace(go.Scatter(x=t, y=y, mode="lines", line=dict(color='#0000ff', width=4), name="Y"), secondary_y=False)
    
    # add events as heatmap
    fig.add_trace(go.Heatmap(z=[e], zmin=np.nanmin(possible_events), zmax=np.nanmax(possible_events),
                             x=t, y=[0, 0.5 * np.nanmin([x, y])],
                             colorscale=d_colors,
                             colorbar=dict(
                                 len=0.5,
                                 thickness=25,
                                 tickvals=[np.mean(possible_events[k:k+2]) for k in range(len(possible_events)-1)],
                                 ticktext=[e for e in possible_events]
                             )),
                  secondary_y=False)
    
    # move legend to top left
    fig.update_layout(legend=dict(
        yanchor="top",
        y=0.99,
        xanchor="left",
        x=0.01
    ))
    

    Here's an example output (there's also a velocity v trace there, can ignore it): enter image description here