I have an eye tracking dataset consisting of four columns:
t
is a numpy array of timestampsx
and y
are the pixel-coordinates of the gazee
is an array of values {0, 1, 2, 3, 4, 5}
marking each sample as a different gaze-event (fixation, saccade, etc.)I want to plot the x
and y
coordinates over time, and add a rectangle on/under the figure with changing colors depending on the value of e
.
Some example data:
t = np.arange(30)
x = np.array([125.9529, 124.6142, 125.0569, 125.3117, 126.7498, 127.035,125.4822, 125.6249, 126.9371, 127.6047, 129.031 , 128.2419, 121.521 , 114.7071, 109.4141, 100.5057, 94.9606, 95.2231, 95.9032, 96.4991, 101.2602, 103.9582, 108.2527, 108.8801, 110.3254, 112.8205, 113.0079, 113.3547, 113.0962, 113.2508])
y = np.array([31.218 , 31.236 , 31.147 , 31.2614, 30.806 , 30.8423, 31.727, 32.2256, 32.0504, 32.7774, 34.7089, 37.0671, 46.309 , 55.9716, 62.4481, 68.0248, 75.4912, 79.0622, 81.2176, 83.191 , 83.7656, 84.6713, 83.9343, 82.4546, 81.1652, 80.7981, 80.2136, 80.7405, 80.4398, 80.0738])
e = np.array([1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 3., 3., 3., 3., 3., 3., 4., 4., 4., 4.])
And my attempt at coding this:
import plotly.graph_objects as go
from plotly.subplots import make_subplots
fig = make_subplots()
fig.add_trace(ply.graph_objects.Line(x=t, y=x, name="X"),
secondary_y=False, row=1, col=1)
fig.add_trace(ply.graph_objects.Line(x=t, y=y, name="Y"),
secondary_y=False, row=1, col=1)
fig.add_shape(type="rect",
x0=t[0], y0=0, x1=t[-1], y1=0.05 * np.max([x, y]),
line=dict(color="black", width=2),
fillcolor=e)
This raises a Value Error: Invalid value of type 'numpy.ndarray' received for the 'fillcolor' property of layout.shape
Following up on @EricLavault's answer, I'm attaching here the complete code for posterity:
# create discrete color scale:
colors = list('rgbako')
possible_events = np.arange(6).astype(int)
bounds = sorted(np.concatenate([possible_events, [len(possible_events)]]))
norm_bounds = [(b - bounds[0]) / (bounds[-1] - bounds[0]) for b in bounds]
d_colors = []
for k in range(len(colors)):
d_colors.extend([(norm_bounds[k], colors[k]), (norm_bounds[k], colors[k+1])])
# assume you have t, x, y, e
# create a figure with X- Y-coordinates over time, and overlay the event chart
fig = make_subplots(specs=[[{"secondary_y": True}]])
fig.add_trace(go.Scatter(x=t, y=x, mode="lines", line=dict(color='#ff0000', width=4), name="X"), secondary_y=False)
fig.add_trace(go.Scatter(x=t, y=y, mode="lines", line=dict(color='#0000ff', width=4), name="Y"), secondary_y=False)
# add events as heatmap
fig.add_trace(go.Heatmap(z=[e], zmin=np.nanmin(possible_events), zmax=np.nanmax(possible_events),
x=t, y=[0, 0.5 * np.nanmin([x, y])],
colorscale=d_colors,
colorbar=dict(
len=0.5,
thickness=25,
tickvals=[np.mean(possible_events[k:k+2]) for k in range(len(possible_events)-1)],
ticktext=[e for e in possible_events]
)),
secondary_y=False)
# move legend to top left
fig.update_layout(legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
))
Here's an example output (there's also a velocity v
trace there, can ignore it):