pythonopencv3dopen3d

drawing an oriented 3d bounding box over image using lidar_to_camera extrinsic and camera_intrinsic matrix using opencv-python


I am using opencv-python to read images, for each image I have a list of 3d bounding boxes having xyz_location, xyz_scale, and xyz_rotation (euler angles) in lidar coordinates and the provided transformation matrices are extrinsic_matrix from (lidar to camera coords) and intrinsic_matrix (from camera coords to pixel coords).

I needed to create a way to overlay/draw the bounding boxes on top of the image and then add image to open3d.visualization.Visualizer. For that I created the following function:

def __add_bbox__(self, label_dict: dict):
        if 'camera_bbox' not in label_dict: return
        camera_bbox_dict = label_dict['camera_bbox']
        center = camera_bbox_dict['xyz_center']
        w, l, h = camera_bbox_dict['wlh_extent']
        rotation_matrix = camera_bbox_dict['xyz_rotation_matrix']
        color = camera_bbox_dict['rgb_bbox_color']
        
        # define 3D bounding box
        x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]
        y_corners = [0, 0, 0, 0, -h, -h, -h, -h]
        z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]
        # rotate and translate 3D bounding box
        corners_3d = np.dot(rotation_matrix, np.vstack([x_corners, y_corners, z_corners]))
        # moving the center to object center
        corners_3d[0, :] = corners_3d[0, :] + center[0]
        corners_3d[1, :] = corners_3d[1, :] + center[1]
        corners_3d[2, :] = corners_3d[2, :] + center[2]
        # if any corner is behind camera, return
        if np.any(corners_3d[2, :] < 0.1): return
        # project 3D bounding box to 2D image
        corners_2d = label_dict['calib']['P2'].reshape(3, 4) @ nx3_to_nx4(corners_3d.T).T
        corners_2d = corners_2d.T # 3x8 -> 8x3
        corners_2d = corners_2d[:, 0:2] / corners_2d[:, 2:3]
        corners_2d = corners_2d[:, 0:2].astype(np.int32)
        # draw 2D bounding box
        img_np = np.asarray(self.img)
        for k in range(0, 4):
            i, j = k, (k + 1) % 4
            cv2.line(img_np, (corners_2d[i, 0], corners_2d[i, 1]), (corners_2d[j, 0], corners_2d[j, 1]), color, self.cfg.visualization.camera.bbox_line_width)
            i, j = k + 4, (k + 1) % 4 + 4
            cv2.line(img_np, (corners_2d[i, 0], corners_2d[i, 1]), (corners_2d[j, 0], corners_2d[j, 1]), color, self.cfg.visualization.camera.bbox_line_width)
            i, j = k, k + 4
            cv2.line(img_np, (corners_2d[i, 0], corners_2d[i, 1]), (corners_2d[j, 0], corners_2d[j, 1]), color, self.cfg.visualization.camera.bbox_line_width)
        
        self.img = o3d.geometry.Image(img_np)
        self.__add_geometry__('image', self.img, False)

whereas the __add_geometry__ function simply removes the previous open3d.geometry.Image and add the new one.

I have a calibration file reader function named Hanlder as following:

def Handler(label_path: str, calib_path: str):
    output = []
    
    # read calib
    calib_file_name = os.path.basename(calib_path).split('.')[0]
    calib_path = calib_path.replace(calib_file_name, 'front') # front camera calib
    calib_exists = os.path.exists(calib_path)
    if calib_exists:
        with open(calib_path, 'r') as f: calib = json.load(f)
        extrinsic_matrix  = np.reshape(calib['extrinsic'], [4,4])
        intrinsic_matrix  = np.reshape(calib['intrinsic'], [3,3])

    # read label file
    if os.path.exists(label_path) == False: return output
    with open(label_path, 'r') as f: lbls = json.load(f)
    for item in lbls:
        annotator = item['annotator'] if 'annotator' in item else 'Unknown'
        obj_id = int(item['obj_id'])
        obj_type = item['obj_type']
        psr = item['psr']
        psr_position_xyz = [float(psr['position']['x']), float(psr['position']['y']), float(psr['position']['z'])]
        psr_rotation_xyz = [float(psr['rotation']['x']), float(psr['rotation']['y']), float(psr['rotation']['z'])]
        psr_scale_xyz = [float(psr['scale']['x']), float(psr['scale']['y']), float(psr['scale']['z'])]
        
        label = dict()
        label['annotator'] = annotator
        label['id'] = obj_id
        label['type'] = obj_type
        label['psr'] = psr
        if calib_exists:
            label['calib'] = calib
            label['calib']['P2'] = nx3_to_nx4(intrinsic_matrix)
        
        lidar_xyz_center = np.array(psr_position_xyz, dtype=np.float32)
        lidar_wlh_extent = np.array(psr_scale_xyz, dtype=np.float32)
        lidar_rotation_matrix = o3d.geometry.OrientedBoundingBox.get_rotation_matrix_from_xyz(psr_rotation_xyz)

        if obj_type in colors: lidar_bbox_color = [i / 255.0 for i in colors[obj_type]]
        else: lidar_bbox_color = [0, 0, 0]
        
        label['lidar_bbox'] = {'xyz_center': lidar_xyz_center, 'wlh_extent': lidar_wlh_extent, 'xyz_rotation_matrix': lidar_rotation_matrix, 'rgb_bbox_color': lidar_bbox_color}
        
        if calib_exists:
            R_x = np.array([
                [1,       0,              0],
                [0,       math.cos(psr_rotation_xyz[0]),   -math.sin(psr_rotation_xyz[0])],
                [0,       math.sin(psr_rotation_xyz[0]),   math.cos(psr_rotation_xyz[0])]
            ])

            #Calculate rotation about y axis
            R_y = np.array([
                [math.cos(psr_rotation_xyz[1]),      0,      math.sin(psr_rotation_xyz[1])],
                [0,                       1,      0],
                [-math.sin(psr_rotation_xyz[1]),     0,      math.cos(psr_rotation_xyz[1])]
            ])

            #Calculate rotation about z axis
            R_z = np.array([
                [math.cos(psr_rotation_xyz[2]),    -math.sin(psr_rotation_xyz[2]),      0],
                [math.sin(psr_rotation_xyz[2]),    math.cos(psr_rotation_xyz[2]),       0],
                [0,               0,                  1]])

            camera_rotation_matrix = np.matmul(R_x, np.matmul(R_y, R_z))

            camera_translation_matrix = lidar_xyz_center.reshape([-1,1])
            rotation_and_translation_matrix = np.concatenate([camera_rotation_matrix, camera_translation_matrix], axis=-1)
            rotation_and_translation_matrix = np.concatenate([rotation_and_translation_matrix, np.array([0,0,0,1]).reshape([1,-1])], axis=0)
            
            origin_point = np.array([0, 0, 0, 1])
            camera_xyz_center = np.matmul(extrinsic_matrix, np.matmul(rotation_and_translation_matrix, origin_point))
            camera_xyz_center = camera_xyz_center[0:3]
            
            if obj_type in colors: camera_bbox_color = colors[obj_type]
            else: camera_bbox_color = [0, 0, 0]
            
            label['camera_bbox'] = {'xyz_center': camera_xyz_center, 'wlh_extent': lidar_wlh_extent, 'xyz_rotation_matrix': lidar_rotation_matrix, 'rgb_bbox_color': camera_bbox_color}
        
        output.append(label)
    
    return output

The Hanlder creates a list of label_dict and for each label_dict I call __add_bbox__ function.

This setup draws bounding boxes but they seems off, example images shown below:

This is how my result looks: enter image description here

This is how it should look (ignore coloring and one face filled, just focus the bounds): enter image description here

, I know for sure that transformation matrices are correct (they same label and calib file works in official github implementation here https://github.com/naurril/SUSTechPOINTS/blob/dev-auto-annotate/tools/visualize-camera.py.


Solution

  • Sorry, I made the mistake. This is the line that converts the bounding box corners in camera coordinates to pixel coordinates:

    corners_2d = label_dict['calib']['P2'].reshape(3, 4) @ nx3_to_nx4(corners_3d.T).T

    My P2 matrix was 3x3 so I added a column [1,1,1] in the P2 making it 3x4 (to multiply it with a transpose of 8x4 corners_3d) but that is incorrect, all I had to do is to add [0,0,0,1] in both row and a column making it 4x4 matrix. so instead of

    P2 = [[v1, v2, v3],[v4,v5,v6],[v7,v8,v9],[1,1,1]] # 3x4 with 4th column being [1,1,1]

    I converted P2 to:

    P2 = [[v1,v2,v3,0],[v4,v5,v6,0],[v7,v8,v9,0],[0,0,0,1]] # 4x4 with added row and column of [0,0,0,1]

    and it fixed the strange shift in bboxes.