import ipywidgets as widgets
from IPython.display import display, clear_output
# Create a dropdown widget for selecting the underlying
dropdown_style = {
'description_width': 'initial',
'padding': '10px',
'border': '2px solid #ccc',
'border-radius': '5px',
'background-color': 'green',
'box-shadow': '0 2px 4px rgba(0, 0, 0, 0.1)',
'font-size': '14px',
'color': '#333'
}
underlying_dropdown = widgets.Dropdown(
options=["AH", "CA", "ZS", "NI", "PB"],
description='Select Underlying:',
style=dropdown_style
)
# Create a dropdown widget for selecting the expiration date
expiration_dropdown = widgets.Dropdown(
description='Expiration Date:',
style=dropdown_style
)
# Create the "Display Results" button
calculate_button = widgets.Button(
description='Display Results',
button_style='info'
)
# Create output widgets to display the results
result_output_widget = widgets.Output(layout={'height': 'auto', 'max_height': 'none'})
result_output_widget.add_class("output")
# Define global variables for ct, pt, cy, and py
ct = None
pt = None
cy = None
py = None
cw = None
pw = None
# Define a function to handle the selection change in the underlying dropdown
def handle_underlying_change(change):
global ct, pt, cy, py
selected_underlying = change.new
# Filter the DataFrame to get the rows for the selected underlying and 'CONTRACT_TYPE' equals 'LMEOption'
underlying_df = df.iloc[-1][(df.iloc[-1]['UNDERLYING'] == selected_underlying) & (df.iloc[-1]['CONTRACT_TYPE'] == 'LMEOption')]
# Extract unique expiration dates from the filtered DataFrame
expiration_dates = underlying_df['FORWARD_MONTH'].unique().tolist()
# Update options of the expiration date dropdown
expiration_dropdown.options = expiration_dates
ct = None
pt = None
cy = None
py = None
cw = None
pw = None
# Attach the handle_underlying_change function to the underlying dropdown's observe event
underlying_dropdown.observe(handle_underlying_change, names='value')
def handle_calculate_button_click(button):
with result_output_widget:
clear_output()
global ct, pt, cy, py
selected_underlying = underlying_dropdown.value
selected_exp_date = expiration_dropdown.value
result = ripartizioneEOIprova(todayeoi, yeseoi, weekeoi, underlying=selected_underlying, exp_date=selected_exp_date)
# Attach the handle_calculate_button_click function to the button's on_click event
calculate_button.on_click(handle_calculate_button_click)
# Create HBox layout for the dropdowns and button
dropdowns_and_button = widgets.HBox([underlying_dropdown, expiration_dropdown, calculate_button])
# Set layout for each widget to auto height
for widget in dropdowns_and_button.children:
widget.layout.height = 'auto'
# Arrange the widgets
container = widgets.VBox([
dropdowns_and_button,
result_output_widget
])
# Set layout for the container
container.layout.align_items = 'center'
display(container)
What I'd like to avoid is that, as you can see in the imagine below, the output is shrinked and to visualize it all I've to scroll through it.
I tried changing the HTML code of python, but unluckly this modification is not effective.
I also tried to use this code:
result_output_widget = widgets.Output(layout={'height': 'auto', 'max_height': 'none'}) result_output_widget.add_class("output")
but still got the problem.
I also tried clicking on the LHS of the output, but nothing.
What else could I do?
Before you initiate your widget put this:
style = """
<style>
.jupyter-widgets-output-area .output_scroll {
height: unset !important;
border-radius: unset !important;
-webkit-box-shadow: unset !important;
box-shadow: unset !important;
}
.jupyter-widgets-output-area {
height: auto !important;
}
</style>
"""
display(widgets.HTML(style))
Source: https://github.com/jupyter-widgets/ipywidgets/issues/1791