I have installed the tigramite
package for causal inference and imported the following libraries:
# Imports
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
%matplotlib inline
import sklearn
import tigramite
from tigramite import data_processing as pp
from tigramite.toymodels import structural_causal_processes as toys
from tigramite import plotting as tp
from tigramite.pcmci import PCMCI
from tigramite.lpcmci import LPCMCI
from tigramite.independence_tests.parcorr import ParCorr
from tigramite.independence_tests.robust_parcorr import RobustParCorr
from tigramite.independence_tests.parcorr_wls import ParCorrWLS
from tigramite.independence_tests.gpdc import GPDC
from tigramite.independence_tests.cmiknn import CMIknn
from tigramite.independence_tests.cmisymb import CMIsymb
from tigramite.independence_tests.gsquared import Gsquared
from tigramite.independence_tests.regressionCI import RegressionCI
Now I have found the following code to generate and simulate time series:
np.random.seed(42) # Fix random seed to make results reproducible
links_coeffs = {0: [((0, -1), 0.7), ((1, -1), -0.8)],
1: [((1, -1), 0.8), ((3, -1), 0.8)],
2: [((2, -1), 0.5), ((1, -2), 0.5), ((3, -3), 0.6)],
3: [((3, -1), 0.4)],
} #stores the coefficients of the SCM
T = 1000 # time series length
#generate the timeseries
data, true_parents_neighbors = toys.structural_causal_process(links_coeffs, T=T)
T, N = data.shape
# Initialize dataframe object, specify time axis and variable names
var_names = [r'$X^0$', r'$X^1$', r'$X^2$', r'$X^3$']
dataframe = pp.DataFrame(data,
datatime = {0:np.arange(len(data))},
var_names=var_names)
However I got IndexError: tuple index out of range
coming, probably from the line to generate the time series data, true_parents_neighbors = toys.structural_causal_process(links_coeffs, T=T)
How can I solve it?
That's because of the format of your links_coeffs
.
To use structural_causal_process
, the links must have the format {0:[((i, -tau), coeff, func),...], 1:[...], ...}
, which don't match the one you specify. Correct links would look like this :
def fn(x):
return x
links_coeffs = {
0: [((0, -1), 0.3, fn), ((2, 0), 0.5, fn), ((3, -1), -0.5, fn)], # X1
1: [((1, -1), 0.3, fn)], # X2
2: [((2, -1), 0.3, fn), ((1, -2), 0.4, fn)], # X3
3: [((3, -1), 0.3, fn)], # X4
}
If you need that specific format of links, then maybe you should consider using var_process
:
data, true_parents_neighbors = toys.
structural_causal_process(links_coeffs, T=T)
data, true_parents_neighbors = toys.var_process(links_coeffs, T=T)