c++multithreadingsimulationsystemc

SystemC Error with wait() in SC_THREAD: "wait() is only allowed in SC_THREADs and SC_CTHREADs"


I'm working on a convolutional neural network simulation using SystemC for a school homework. My code includes a module Conv2d with an SC_THREAD for the forward pass of a convolutional layer, which involves waiting for input readiness. When I invoke sc_start() to begin the simulation, I encounter an error related to the use of wait() within the SC_THREAD. The exact error message is:

The Error Message

Error: (E519) wait() is only allowed in SC_THREADs and SC_CTHREADs: 
        in SC_METHODs use next_trigger() instead
In file: ../../../src/sysc/kernel/sc_wait.cpp:94
make: *** [all] Error 1

despite the fact that I've clearly registered my forward pass function as an SC_THREAD. Here's the relevant part of my module definition

The Module Definition (Conv2d.h)

// Conv2d.h
#ifndef CONV2D_H
#define CONV2D_H

#include <systemc.h>

SC_MODULE(Conv2d) {
private:
    // Layer configuration parameters
    unsigned int in_channels, out_channels;
    unsigned int kernel_height, kernel_width;
    unsigned int stride_height, stride_width;
    unsigned int padding_height, padding_width;
    bool apply_relu;    // Apply ReLU activation after convolution

    // Feature map dimensions
    unsigned int input_feature_map_height, input_feature_map_width;
    unsigned int output_feature_map_height, output_feature_map_width;
    // unsigned int input_feature_map_size, output_feature_map_size;    // Calculated from the above parameters

    // Layer parameters
    std::vector<std::vector<std::vector<std::vector<float>>>> weights;
    std::vector<float> bias;

public:
    // Define the ports for the module
    // Assuming input_feature_map_size and output_feature_map_size are calculated outside this module
    // We need this since the number of ports have to be determined for the module prior to forward passes
    sc_vector<sc_fifo_in<float>> input_feature_map;     // FIFOS offers buffering and prevents race conditions, in case we need to run successive inference
    sc_vector<sc_fifo_out<float>> output_feature_map;
    sc_in<bool> input_ready; // Signal indicating input is ready
    sc_out<bool> output_ready; // Signal indicating output is ready

    // Constructor with configuration parameters
    SC_HAS_PROCESS(Conv2d);
    Conv2d(sc_module_name name)
        : in_channels(1), out_channels(1),
          kernel_height(3), kernel_width(3),
          stride_height(1), stride_width(1),
          padding_height(1), padding_width(1),
          apply_relu(false),
          input_feature_map_height(3), input_feature_map_width(3),
          output_feature_map_height(3), output_feature_map_width(3),
          input_ready("input_ready"), output_ready("output_ready") {
        // initialize parameters of the convolutional layer's weights and biases
        initialize_parameters();

        // Register the forward pass function with the SystemC kernel
        SC_THREAD(forward_pass);
        sensitive << input_ready.pos();
        dont_initialize();  // Ensure the thread is not triggered upon initialization
    }

    void configure(unsigned int in_c, unsigned int out_c,
                   std::pair<unsigned int, unsigned int> kernel_size,
                   std::pair<unsigned int, unsigned int> stride,
                   std::pair<unsigned int, unsigned int> padding,
                   bool relu,
                   unsigned int in_feature_map_size, unsigned int out_feature_map_size,
                   std::pair<unsigned int, unsigned int> in_feature_map_dimension, std::pair<unsigned int, unsigned int> out_feature_map_dimension) {
        // Configure the layer with the given parameters
        in_channels = in_c;
        out_channels = out_c;
        kernel_height = kernel_size.first;
        kernel_width = kernel_size.second;
        stride_height = stride.first;
        stride_width = stride.second;
        padding_height = padding.first;
        padding_width = padding.second;
        apply_relu = relu;

        // Initialize input and output feature maps
        input_feature_map_height = in_feature_map_dimension.first;
        input_feature_map_width = in_feature_map_dimension.second;
        input_feature_map.init(in_feature_map_size);
        output_feature_map_height = out_feature_map_dimension.first;
        output_feature_map_width = out_feature_map_dimension.second;
        output_feature_map.init(out_feature_map_size);

        // Re-initialize parameters
        initialize_parameters();
    }

    // Forward computation using pure C++ primitives
    // We're assuming that the input/output feature maps are in the shape of (C, H, W)
    // and operates directly on it without reconstructing the 1D array back to 3D
    void forward_pass() {
        while(true) {
            wait(); // Wait for input_ready signal
            for (unsigned int out_c = 0; out_c < out_channels; ++out_c) {
                for (unsigned int h = 0; h < output_feature_map_height; ++h) {
                    for (unsigned int w = 0; w < output_feature_map_width; ++w) {
                        float sum = 0.0;
                        for (unsigned int in_c = 0; in_c < in_channels; ++in_c) {
                            for (unsigned int kh = 0; kh < kernel_height; ++kh) {
                                for (unsigned int kw = 0; kw < kernel_width; ++kw) {
                                    // Calculate the input index, considering stride and padding
                                    int h_index = h * stride_height + kh - padding_height;
                                    int w_index = w * stride_width + kw - padding_width;

                                    if (h_index >= 0 && h_index < input_feature_map_height && w_index >= 0 && w_index < input_feature_map_width) {
                                        int input_index = in_c * input_feature_map_height * input_feature_map_width + h_index * input_feature_map_width + w_index;
                                        sum += input_feature_map[input_index].read() * weights[out_c][in_c][kh][kw];
                                    }
                                }
                            }
                        }
                        sum += bias[out_c];
                        if (apply_relu && sum < 0) {
                            sum = 0.0;
                        }
                        int output_index = out_c * output_feature_map_height * output_feature_map_width + h * output_feature_map_width + w;
                        output_feature_map[output_index].write(sum);
                    }
                }
            }

            output_ready.write(true);   // Indicate that output is ready
            wait(1, SC_NS); // Wait for 1 ns to ensure the signal is read before resetting
            output_ready.write(false);  // Reset
        }
    }
};

#endif // CONV2D_H

The main file for instantiating the module and wiring it to the testing data is directly written in sc_main(). This might be the source of problem, but I'm not too sure to wrap it in another testbench module and complicate the matter further.

The Testing Code (main.cpp)

// main.cpp
#include <systemc.h>

#include <vector>
#include <tuple>
#include <iostream>
#include <iomanip>
#include <fstream>

#include <Conv2d.h>
#include <helpers.h>


int sc_main(int argc, char* argv[]) {
    // Example instantiation and configuration
    Conv2d conv_layer("ConvolutionalLayer");
    conv_layer.configure(
        3, 64,
        std::make_pair(11, 11),
        std::make_pair(4, 4),
        std::make_pair(2, 2),
        true,
        150528,
        193600,
        std::make_pair(224, 224),
        std::make_pair(55, 55)
        );

    // Assuming you know the dimensions and shape (C_out, C_in, H, W) of the convolutional layer
    auto conv_layer_shape = conv_layer.weight_shape();
    int out_channels = std::get<0>(conv_layer_shape);
    int in_channels = std::get<1>(conv_layer_shape);
    int rows = std::get<2>(conv_layer_shape);
    int cols = std::get<3>(conv_layer_shape);

    // Load weights from file
    auto weights = reshape_weights(load_weights("./data/conv1_weight.txt"), out_channels, in_channels, rows, cols); // Reshape the weights flat vector into the 4D weights vector
    auto biases = load_weights("./data/conv1_bias.txt");    // Load biases from file, no need to reshape
    conv_layer.load_parameters(weights, biases); // Load the weights and biases into the layer

    // Start the simulation
    // Load image data first
    auto image_data = load_image("./data/cat.txt");

    // Connect the input and output feature maps to the layer
    sc_vector<sc_fifo<float>> input_feature_map_sig("input_feature_map_sig", 150528);
    for (size_t i = 0; i < input_feature_map_sig.size(); i++) {
        conv_layer.input_feature_map[i](input_feature_map_sig[i]);
    }
    sc_vector<sc_fifo<float>> output_feature_map_sig("output_feature_map_sig", 193600);
    for (size_t i = 0; i < output_feature_map_sig.size(); i++) {
        conv_layer.output_feature_map[i](output_feature_map_sig[i]);
    }
    sc_signal<bool> input_ready_sig;
    conv_layer.input_ready(input_ready_sig);
    sc_signal<bool> output_ready_sig;
    conv_layer.output_ready(output_ready_sig);

    // feed the data and signal the layer
    for (size_t i = 0; i < input_feature_map_sig.size(); i++) {
        input_feature_map_sig[i].write(image_data[i]);
    }
    input_ready_sig.write(true);

    // Start the simulation if using SC_THREAD or SC_METHOD for computation
    sc_start(); // Run the simulation

    return 0;
}

I've ensured that my wait() call is indeed inside an SC_THREAD (specifically, the forward_pass method registered as an SC_THREAD in my Conv2d module's constructor). I was expecting the simulation to run without any errors related to wait() usage since, to my understanding, wait() is correctly used within SC_THREAD.

Again, this is the simplified version of my module definition above:

SC_MODULE(Conv2d) {
    // Constructor
    SC_HAS_PROCESS(Conv2d);
    Conv2d(sc_module_name name) {
        SC_THREAD(forward_pass);
        sensitive << input_ready.pos();
        dont_initialize();
    }

    void forward_pass() {
        while(true) {
            wait(); // Wait for input_ready signal
            // Forward pass computations follow...
        }
    }
};

I was expecting the simulation to start and the forward_pass method to wait for the input_ready signal as per the usual operation of an SC_THREAD. The error seems to suggest that wait() is being misused, but from my understanding and according to the SystemC documentation, its usage is correct in this context.


Solution

  • The complaint about wait() outside of a thread is coming from the writes to sc_fifo in sc_main(). Using scfifo.write() is a blocking call, which means it does call wait() if the FIFO cannot be currently written (i.e. it is sized and full).

    To confirm this is the case, you can place a breakpoint at the point of error, and follow the stack trace to confirm the origin of the error. Using gdb:

      gdb sim.exe
      break sc_report_error
      run
      bt
    

    The solution to the problem is to create another module/thread to drive the stimulus to your Conv2D. Writing/reading sc_fifos and sc_signals should not be done except inside processes (threads/methods) spawned by the call to sc_start().