pythonjob-schedulingor-toolscp-sat

OR-Tools CP-SAT: problem with 'scheduling_with_transitions_sat' job shop scheduling example from GitHub


for my current project I've found a similar example on the or tools github repo I use as blueprint: https://github.com/google/or-tools/blob/stable/examples/contrib/scheduling_with_transitions_sat.py

In the working example each job has got only one 'task' with two alternatives:

small_jobs = [ [[(100, 0, 'R6'), (2, 1, 'R6')]], [[(2, 0, 'R3'), (100, 1, 'R3')]], ... ]

In my project I have got many tasks per job, like:

small_jobs = [ [[(100, 0, 'R6'), (2, 1, 'R6')], [(50, 0, 'R6'), (20, 1, 'R6')], [(110, 0, 'R6'), (4, 1, 'R6')]],
               [[(6, 0, 'R3'), (100, 1, 'R3')], [(3, 0, 'R3'), (300, 1, 'R3')], [(3, 0, 'R3'), (100, 1, 'R3')]], ... ]

In the example, if I expand the jobs to have 3 tasks each the optimizer returns INFEASIBLE.

Does anybody know why this happens? Many thanks in advance!

Here is code I modified based on the example:

# -*- coding: utf-8 -*-
"""Scheduling problem with transition time between tasks and transitions costs.

@author: CSLiu2
"""


import argparse
import collections

from ortools.sat.python import cp_model
from google.protobuf import text_format

#----------------------------------------------------------------------------
# Command line arguments.
PARSER = argparse.ArgumentParser()
PARSER.add_argument(
    '--problem_instance', default=0, type=int, help='Problem instance.')
PARSER.add_argument(
    '--output_proto',
    default='',
    help='Output file to write the cp_model proto to.')
PARSER.add_argument('--params', default='', help='Sat solver parameters.')


#----------------------------------------------------------------------------
# Intermediate solution printer
class SolutionPrinter(cp_model.CpSolverSolutionCallback):
  """Print intermediate solutions."""

  def __init__(self, makespan):
    cp_model.CpSolverSolutionCallback.__init__(self)
    self.__solution_count = 0
    self.__makespan = makespan

  def OnSolutionCallback(self):
    print('Solution %i, time = %f s, objective = %i, makespan = %i' %
          (self.__solution_count, self.WallTime(), self.ObjectiveValue(),
           self.Value(self.__makespan)))
    self.__solution_count += 1


def main(args):
  """Solves the scheduling with transitions problem."""

  instance = args.problem_instance
  parameters = args.params
  output_proto = args.output_proto

  #----------------------------------------------------------------------------
  # Data.
  jobs = [[[(100, 0, 'R6'), (2, 1, 'R6')], [(50, 0, 'R6'), (2, 1, 'R6')], [(110, 0, 'R6'), (2, 1, 'R6')]],
          [[(6, 0, 'R3'), (100, 1, 'R3')], [(3, 0, 'R3'), (300, 1, 'R3')], [(3, 0, 'R3'), (100, 1, 'R3')]],
          [[(300, 0, 'R1'), (16, 1, 'R1')], [(100, 0, 'R1'), (6, 1, 'R1')], [(200, 0, 'R1'), (61, 1, 'R1')]]]

  #----------------------------------------------------------------------------
  # Helper data.
  num_jobs = len(jobs)
  print(num_jobs)
  all_jobs = range(num_jobs)
  num_machines = 2
  all_machines = range(num_machines)

  #----------------------------------------------------------------------------
  # Model.
  model = cp_model.CpModel()

  #----------------------------------------------------------------------------
  # Compute a maximum makespan greedily.
  horizon = 0
  for job in jobs:
    for task in job:
      max_task_duration = 0
      for alternative in task:
        max_task_duration = max(max_task_duration, alternative[0])
      horizon += max_task_duration

  print('Horizon = %i' % horizon)

  #----------------------------------------------------------------------------
  # Global storage of variables.
  intervals_per_machines = collections.defaultdict(list)
  presences_per_machines = collections.defaultdict(list)
  starts_per_machines = collections.defaultdict(list)
  ends_per_machines = collections.defaultdict(list)
  resources_per_machines = collections.defaultdict(list)
  ranks_per_machines = collections.defaultdict(list)

  job_starts = {}  # indexed by (job_id, task_id).
  job_presences = {}  # indexed by (job_id, task_id, alt_id).
  job_ranks = {}  # indexed by (job_id, task_id, alt_id).
  job_ends = []  # indexed by job_id

  #----------------------------------------------------------------------------
  # Scan the jobs and create the relevant variables and intervals.
  for job_id in all_jobs:
    job = jobs[job_id]
    num_tasks = len(job)
    previous_end = None
    for task_id in range(num_tasks):
      task = job[task_id]

      min_duration = task[0][0]
      max_duration = task[0][0]

      num_alternatives = len(task)
      all_alternatives = range(num_alternatives)

      for alt_id in range(1, num_alternatives):
        alt_duration = task[alt_id][0]
        min_duration = min(min_duration, alt_duration)
        max_duration = max(max_duration, alt_duration)

      # Create main interval for the task.
      suffix_name = '_j%i_t%i' % (job_id, task_id)
      start = model.NewIntVar(0, horizon, 'start' + suffix_name)
      duration = model.NewIntVar(min_duration, max_duration,
                                 'duration' + suffix_name)
      end = model.NewIntVar(0, horizon, 'end' + suffix_name)

      # Store the start for the solution.
      job_starts[(job_id, task_id)] = start

      # Add precedence with previous task in the same job.
      if previous_end is not None:
        model.Add(start >= previous_end)
      previous_end = end

      # Create alternative intervals.
      l_presences = []
      for alt_id in all_alternatives:
        ### add to link interval with eqp constraint.
        ### process time = -1 cannot be processed at this machine.
        if jobs[job_id][task_id][alt_id][0] == -1:
          continue
        alt_suffix = '_j%i_t%i_a%i' % (job_id, task_id, alt_id)
        l_presence = model.NewBoolVar('presence' + alt_suffix)
        l_start = model.NewIntVar(0, horizon, 'start' + alt_suffix)
        l_duration = task[alt_id][0]
        l_end = model.NewIntVar(0, horizon, 'end' + alt_suffix)
        l_interval = model.NewOptionalIntervalVar(
            l_start, l_duration, l_end, l_presence, 'interval' + alt_suffix)
        l_rank = model.NewIntVar(-1, num_jobs, 'rank' + alt_suffix)
        l_presences.append(l_presence)
        l_machine = task[alt_id][1]
        l_type = task[alt_id][2]

        # Link the original variables with the local ones.
        model.Add(start == l_start).OnlyEnforceIf(l_presence)
        model.Add(duration == l_duration).OnlyEnforceIf(l_presence)
        model.Add(end == l_end).OnlyEnforceIf(l_presence)

        # Add the local variables to the right machine.
        intervals_per_machines[l_machine].append(l_interval)
        starts_per_machines[l_machine].append(l_start)
        ends_per_machines[l_machine].append(l_end)
        presences_per_machines[l_machine].append(l_presence)
        resources_per_machines[l_machine].append(l_type)
        ranks_per_machines[l_machine].append(l_rank)

        # Store the variables for the solution.
        job_presences[(job_id, task_id, alt_id)] = l_presence
        job_ranks[(job_id, task_id, alt_id)] = l_rank

      # Only one machine can process each lot.
      model.Add(sum(l_presences) == 1)

    job_ends.append(previous_end)

  #----------------------------------------------------------------------------
  # Create machines constraints nonoverlap process
  for machine_id in all_machines:
    intervals = intervals_per_machines[machine_id]
    if len(intervals) > 1:
      model.AddNoOverlap(intervals)

  #----------------------------------------------------------------------------
  # Transition times and transition costs using a circuit constraint.
  switch_literals = []
  for machine_id in all_machines:
    machine_starts = starts_per_machines[machine_id]
    machine_ends = ends_per_machines[machine_id]
    machine_presences = presences_per_machines[machine_id]
    machine_resources = resources_per_machines[machine_id]
    machine_ranks = ranks_per_machines[machine_id]
    intervals = intervals_per_machines[machine_id]
    arcs = []
    num_machine_tasks = len(machine_starts)
    all_machine_tasks = range(num_machine_tasks)

    for i in all_machine_tasks:
      # Initial arc from the dummy node (0) to a task.
      start_lit = model.NewBoolVar('')
      arcs.append([0, i + 1, start_lit])
      # If this task is the first, set both rank and start to 0.
      model.Add(machine_ranks[i] == 0).OnlyEnforceIf(start_lit)
      model.Add(machine_starts[i] == 0).OnlyEnforceIf(start_lit)
      # Final arc from an arc to the dummy node.
      arcs.append([i + 1, 0, model.NewBoolVar('')])
      # Self arc if the task is not performed.
      arcs.append([i + 1, i + 1, machine_presences[i].Not()])
      model.Add(machine_ranks[i] == -1).OnlyEnforceIf(
          machine_presences[i].Not())

      for j in all_machine_tasks:
        if i == j:
          continue

        lit = model.NewBoolVar('%i follows %i' % (j, i))
        arcs.append([i + 1, j + 1, lit])
        model.AddImplication(lit, machine_presences[i])
        model.AddImplication(lit, machine_presences[j])

        # Maintain rank incrementally.
        model.Add(machine_ranks[j] == machine_ranks[i] + 1).OnlyEnforceIf(lit)

        # Compute the transition time if task j is the successor of task i.
        if machine_resources[i] != machine_resources[j]:
          transition_time = 3
          switch_literals.append(lit)
        else:
          transition_time = 0
        # We add the reified transition to link the literals with the times
        # of the tasks.
        model.Add(machine_starts[j] == machine_ends[i] +
                  transition_time).OnlyEnforceIf(lit)
    if arcs:
        model.AddCircuit(arcs)

  #----------------------------------------------------------------------------
  # Objective.
  makespan = model.NewIntVar(0, horizon, 'makespan')
  model.AddMaxEquality(makespan, job_ends)
  makespan_weight = 1
  transition_weight = 5
  model.Minimize(makespan * makespan_weight +
                 sum(switch_literals) * transition_weight)

  #----------------------------------------------------------------------------
  # Write problem to file.
  if output_proto:
    print('Writing proto to %s' % output_proto)
    with open(output_proto, 'w') as text_file:
      text_file.write(str(model))

  #----------------------------------------------------------------------------
  # Solve.
  solver = cp_model.CpSolver()
  solver.parameters.max_time_in_seconds = 60 * 60 * 2
  if parameters:
    text_format.Merge(parameters, solver.parameters)
  solution_printer = SolutionPrinter(makespan)
  status = solver.Solve(model, solution_printer)

  #----------------------------------------------------------------------------
  # Print solution.
  if status == cp_model.FEASIBLE or status == cp_model.OPTIMAL:
    for job_id in all_jobs:
      for task_id in range(len(jobs[job_id])):
        start_value = solver.Value(job_starts[(job_id, task_id)])
        machine = 0
        duration = 0
        select = 0
        rank = -1

        for alt_id in range(len(jobs[job_id][task_id])):
          if jobs[job_id][task_id][alt_id][0] == -1:
            continue

          if solver.BooleanValue(job_presences[(job_id, task_id, alt_id)]):
            duration = jobs[job_id][task_id][alt_id][0]
            machine = jobs[job_id][task_id][alt_id][1]
            select = alt_id
            rank = solver.Value(job_ranks[(job_id, task_id, alt_id)])

        print(
            '  Job %i Task %i starts at %i (alt %i, duration %i) with rank %i on machine %i'
            % (job_id, task_id, start_value, select, duration, rank, machine))

    print('Solve status: %s' % solver.StatusName(status))
    print('Objective value: %i' % solver.ObjectiveValue())
    print('Makespan: %i' % solver.Value(makespan))


if __name__ == '__main__':
  main(PARSER.parse_args())

Solution

  • The error is in the upper bound of the rank variable.

    changing it to:

        l_rank = model.NewIntVar(-1, 100, 'rank' + alt_suffix)
    

    gives an optimal solution:

    3
    Horizon = 1360
    Solution 0, time = 0.052364 s, objective = 505, makespan = 495
    Solution 1, time = 0.060635 s, objective = 500, makespan = 92
    Solution 2, time = 0.061082 s, objective = 498, makespan = 92
    Solution 3, time = 0.062551 s, objective = 496, makespan = 92
    Solution 4, time = 0.063067 s, objective = 494, makespan = 92
    Solution 5, time = 0.063667 s, objective = 492, makespan = 92
    Solution 6, time = 0.065125 s, objective = 490, makespan = 92
    Solution 7, time = 0.066169 s, objective = 205, makespan = 195
    Solution 8, time = 0.077505 s, objective = 105, makespan = 95
    Solution 9, time = 0.080687 s, objective = 97, makespan = 92
      Job 0 Task 0 starts at 86 (alt 1, duration 2) with rank 3 on machine 1
      Job 0 Task 1 starts at 88 (alt 1, duration 2) with rank 4 on machine 1
      Job 0 Task 2 starts at 90 (alt 1, duration 2) with rank 5 on machine 1
      Job 1 Task 0 starts at 0 (alt 0, duration 6) with rank 0 on machine 0
      Job 1 Task 1 starts at 6 (alt 0, duration 3) with rank 1 on machine 0
      Job 1 Task 2 starts at 9 (alt 0, duration 3) with rank 2 on machine 0
      Job 2 Task 0 starts at 0 (alt 1, duration 16) with rank 0 on machine 1
      Job 2 Task 1 starts at 16 (alt 1, duration 6) with rank 1 on machine 1
      Job 2 Task 2 starts at 22 (alt 1, duration 61) with rank 2 on machine 1
    Solve status: OPTIMAL
    Objective value: 97
    Makespan: 92
    

    Note: The exact upper bound is the number of jobs on that machine.