for my current project I've found a similar example on the or tools github repo I use as blueprint: https://github.com/google/or-tools/blob/stable/examples/contrib/scheduling_with_transitions_sat.py
In the working example each job has got only one 'task' with two alternatives:
small_jobs = [ [[(100, 0, 'R6'), (2, 1, 'R6')]], [[(2, 0, 'R3'), (100, 1, 'R3')]], ... ]
In my project I have got many tasks per job, like:
small_jobs = [ [[(100, 0, 'R6'), (2, 1, 'R6')], [(50, 0, 'R6'), (20, 1, 'R6')], [(110, 0, 'R6'), (4, 1, 'R6')]],
[[(6, 0, 'R3'), (100, 1, 'R3')], [(3, 0, 'R3'), (300, 1, 'R3')], [(3, 0, 'R3'), (100, 1, 'R3')]], ... ]
In the example, if I expand the jobs to have 3 tasks each the optimizer returns INFEASIBLE.
Does anybody know why this happens? Many thanks in advance!
Here is code I modified based on the example:
# -*- coding: utf-8 -*-
"""Scheduling problem with transition time between tasks and transitions costs.
@author: CSLiu2
"""
import argparse
import collections
from ortools.sat.python import cp_model
from google.protobuf import text_format
#----------------------------------------------------------------------------
# Command line arguments.
PARSER = argparse.ArgumentParser()
PARSER.add_argument(
'--problem_instance', default=0, type=int, help='Problem instance.')
PARSER.add_argument(
'--output_proto',
default='',
help='Output file to write the cp_model proto to.')
PARSER.add_argument('--params', default='', help='Sat solver parameters.')
#----------------------------------------------------------------------------
# Intermediate solution printer
class SolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, makespan):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__solution_count = 0
self.__makespan = makespan
def OnSolutionCallback(self):
print('Solution %i, time = %f s, objective = %i, makespan = %i' %
(self.__solution_count, self.WallTime(), self.ObjectiveValue(),
self.Value(self.__makespan)))
self.__solution_count += 1
def main(args):
"""Solves the scheduling with transitions problem."""
instance = args.problem_instance
parameters = args.params
output_proto = args.output_proto
#----------------------------------------------------------------------------
# Data.
jobs = [[[(100, 0, 'R6'), (2, 1, 'R6')], [(50, 0, 'R6'), (2, 1, 'R6')], [(110, 0, 'R6'), (2, 1, 'R6')]],
[[(6, 0, 'R3'), (100, 1, 'R3')], [(3, 0, 'R3'), (300, 1, 'R3')], [(3, 0, 'R3'), (100, 1, 'R3')]],
[[(300, 0, 'R1'), (16, 1, 'R1')], [(100, 0, 'R1'), (6, 1, 'R1')], [(200, 0, 'R1'), (61, 1, 'R1')]]]
#----------------------------------------------------------------------------
# Helper data.
num_jobs = len(jobs)
print(num_jobs)
all_jobs = range(num_jobs)
num_machines = 2
all_machines = range(num_machines)
#----------------------------------------------------------------------------
# Model.
model = cp_model.CpModel()
#----------------------------------------------------------------------------
# Compute a maximum makespan greedily.
horizon = 0
for job in jobs:
for task in job:
max_task_duration = 0
for alternative in task:
max_task_duration = max(max_task_duration, alternative[0])
horizon += max_task_duration
print('Horizon = %i' % horizon)
#----------------------------------------------------------------------------
# Global storage of variables.
intervals_per_machines = collections.defaultdict(list)
presences_per_machines = collections.defaultdict(list)
starts_per_machines = collections.defaultdict(list)
ends_per_machines = collections.defaultdict(list)
resources_per_machines = collections.defaultdict(list)
ranks_per_machines = collections.defaultdict(list)
job_starts = {} # indexed by (job_id, task_id).
job_presences = {} # indexed by (job_id, task_id, alt_id).
job_ranks = {} # indexed by (job_id, task_id, alt_id).
job_ends = [] # indexed by job_id
#----------------------------------------------------------------------------
# Scan the jobs and create the relevant variables and intervals.
for job_id in all_jobs:
job = jobs[job_id]
num_tasks = len(job)
previous_end = None
for task_id in range(num_tasks):
task = job[task_id]
min_duration = task[0][0]
max_duration = task[0][0]
num_alternatives = len(task)
all_alternatives = range(num_alternatives)
for alt_id in range(1, num_alternatives):
alt_duration = task[alt_id][0]
min_duration = min(min_duration, alt_duration)
max_duration = max(max_duration, alt_duration)
# Create main interval for the task.
suffix_name = '_j%i_t%i' % (job_id, task_id)
start = model.NewIntVar(0, horizon, 'start' + suffix_name)
duration = model.NewIntVar(min_duration, max_duration,
'duration' + suffix_name)
end = model.NewIntVar(0, horizon, 'end' + suffix_name)
# Store the start for the solution.
job_starts[(job_id, task_id)] = start
# Add precedence with previous task in the same job.
if previous_end is not None:
model.Add(start >= previous_end)
previous_end = end
# Create alternative intervals.
l_presences = []
for alt_id in all_alternatives:
### add to link interval with eqp constraint.
### process time = -1 cannot be processed at this machine.
if jobs[job_id][task_id][alt_id][0] == -1:
continue
alt_suffix = '_j%i_t%i_a%i' % (job_id, task_id, alt_id)
l_presence = model.NewBoolVar('presence' + alt_suffix)
l_start = model.NewIntVar(0, horizon, 'start' + alt_suffix)
l_duration = task[alt_id][0]
l_end = model.NewIntVar(0, horizon, 'end' + alt_suffix)
l_interval = model.NewOptionalIntervalVar(
l_start, l_duration, l_end, l_presence, 'interval' + alt_suffix)
l_rank = model.NewIntVar(-1, num_jobs, 'rank' + alt_suffix)
l_presences.append(l_presence)
l_machine = task[alt_id][1]
l_type = task[alt_id][2]
# Link the original variables with the local ones.
model.Add(start == l_start).OnlyEnforceIf(l_presence)
model.Add(duration == l_duration).OnlyEnforceIf(l_presence)
model.Add(end == l_end).OnlyEnforceIf(l_presence)
# Add the local variables to the right machine.
intervals_per_machines[l_machine].append(l_interval)
starts_per_machines[l_machine].append(l_start)
ends_per_machines[l_machine].append(l_end)
presences_per_machines[l_machine].append(l_presence)
resources_per_machines[l_machine].append(l_type)
ranks_per_machines[l_machine].append(l_rank)
# Store the variables for the solution.
job_presences[(job_id, task_id, alt_id)] = l_presence
job_ranks[(job_id, task_id, alt_id)] = l_rank
# Only one machine can process each lot.
model.Add(sum(l_presences) == 1)
job_ends.append(previous_end)
#----------------------------------------------------------------------------
# Create machines constraints nonoverlap process
for machine_id in all_machines:
intervals = intervals_per_machines[machine_id]
if len(intervals) > 1:
model.AddNoOverlap(intervals)
#----------------------------------------------------------------------------
# Transition times and transition costs using a circuit constraint.
switch_literals = []
for machine_id in all_machines:
machine_starts = starts_per_machines[machine_id]
machine_ends = ends_per_machines[machine_id]
machine_presences = presences_per_machines[machine_id]
machine_resources = resources_per_machines[machine_id]
machine_ranks = ranks_per_machines[machine_id]
intervals = intervals_per_machines[machine_id]
arcs = []
num_machine_tasks = len(machine_starts)
all_machine_tasks = range(num_machine_tasks)
for i in all_machine_tasks:
# Initial arc from the dummy node (0) to a task.
start_lit = model.NewBoolVar('')
arcs.append([0, i + 1, start_lit])
# If this task is the first, set both rank and start to 0.
model.Add(machine_ranks[i] == 0).OnlyEnforceIf(start_lit)
model.Add(machine_starts[i] == 0).OnlyEnforceIf(start_lit)
# Final arc from an arc to the dummy node.
arcs.append([i + 1, 0, model.NewBoolVar('')])
# Self arc if the task is not performed.
arcs.append([i + 1, i + 1, machine_presences[i].Not()])
model.Add(machine_ranks[i] == -1).OnlyEnforceIf(
machine_presences[i].Not())
for j in all_machine_tasks:
if i == j:
continue
lit = model.NewBoolVar('%i follows %i' % (j, i))
arcs.append([i + 1, j + 1, lit])
model.AddImplication(lit, machine_presences[i])
model.AddImplication(lit, machine_presences[j])
# Maintain rank incrementally.
model.Add(machine_ranks[j] == machine_ranks[i] + 1).OnlyEnforceIf(lit)
# Compute the transition time if task j is the successor of task i.
if machine_resources[i] != machine_resources[j]:
transition_time = 3
switch_literals.append(lit)
else:
transition_time = 0
# We add the reified transition to link the literals with the times
# of the tasks.
model.Add(machine_starts[j] == machine_ends[i] +
transition_time).OnlyEnforceIf(lit)
if arcs:
model.AddCircuit(arcs)
#----------------------------------------------------------------------------
# Objective.
makespan = model.NewIntVar(0, horizon, 'makespan')
model.AddMaxEquality(makespan, job_ends)
makespan_weight = 1
transition_weight = 5
model.Minimize(makespan * makespan_weight +
sum(switch_literals) * transition_weight)
#----------------------------------------------------------------------------
# Write problem to file.
if output_proto:
print('Writing proto to %s' % output_proto)
with open(output_proto, 'w') as text_file:
text_file.write(str(model))
#----------------------------------------------------------------------------
# Solve.
solver = cp_model.CpSolver()
solver.parameters.max_time_in_seconds = 60 * 60 * 2
if parameters:
text_format.Merge(parameters, solver.parameters)
solution_printer = SolutionPrinter(makespan)
status = solver.Solve(model, solution_printer)
#----------------------------------------------------------------------------
# Print solution.
if status == cp_model.FEASIBLE or status == cp_model.OPTIMAL:
for job_id in all_jobs:
for task_id in range(len(jobs[job_id])):
start_value = solver.Value(job_starts[(job_id, task_id)])
machine = 0
duration = 0
select = 0
rank = -1
for alt_id in range(len(jobs[job_id][task_id])):
if jobs[job_id][task_id][alt_id][0] == -1:
continue
if solver.BooleanValue(job_presences[(job_id, task_id, alt_id)]):
duration = jobs[job_id][task_id][alt_id][0]
machine = jobs[job_id][task_id][alt_id][1]
select = alt_id
rank = solver.Value(job_ranks[(job_id, task_id, alt_id)])
print(
' Job %i Task %i starts at %i (alt %i, duration %i) with rank %i on machine %i'
% (job_id, task_id, start_value, select, duration, rank, machine))
print('Solve status: %s' % solver.StatusName(status))
print('Objective value: %i' % solver.ObjectiveValue())
print('Makespan: %i' % solver.Value(makespan))
if __name__ == '__main__':
main(PARSER.parse_args())
The error is in the upper bound of the rank variable.
changing it to:
l_rank = model.NewIntVar(-1, 100, 'rank' + alt_suffix)
gives an optimal solution:
3
Horizon = 1360
Solution 0, time = 0.052364 s, objective = 505, makespan = 495
Solution 1, time = 0.060635 s, objective = 500, makespan = 92
Solution 2, time = 0.061082 s, objective = 498, makespan = 92
Solution 3, time = 0.062551 s, objective = 496, makespan = 92
Solution 4, time = 0.063067 s, objective = 494, makespan = 92
Solution 5, time = 0.063667 s, objective = 492, makespan = 92
Solution 6, time = 0.065125 s, objective = 490, makespan = 92
Solution 7, time = 0.066169 s, objective = 205, makespan = 195
Solution 8, time = 0.077505 s, objective = 105, makespan = 95
Solution 9, time = 0.080687 s, objective = 97, makespan = 92
Job 0 Task 0 starts at 86 (alt 1, duration 2) with rank 3 on machine 1
Job 0 Task 1 starts at 88 (alt 1, duration 2) with rank 4 on machine 1
Job 0 Task 2 starts at 90 (alt 1, duration 2) with rank 5 on machine 1
Job 1 Task 0 starts at 0 (alt 0, duration 6) with rank 0 on machine 0
Job 1 Task 1 starts at 6 (alt 0, duration 3) with rank 1 on machine 0
Job 1 Task 2 starts at 9 (alt 0, duration 3) with rank 2 on machine 0
Job 2 Task 0 starts at 0 (alt 1, duration 16) with rank 0 on machine 1
Job 2 Task 1 starts at 16 (alt 1, duration 6) with rank 1 on machine 1
Job 2 Task 2 starts at 22 (alt 1, duration 61) with rank 2 on machine 1
Solve status: OPTIMAL
Objective value: 97
Makespan: 92
Note: The exact upper bound is the number of jobs on that machine.