I am trying to run
from ydata_profiling import ProfileReport
profile = ProfileReport(merged_data)
profile.to_notebook_iframe()
in jupyter notebook. But I am getting an error:
AttributeError: module 'numba' has no attribute 'generated_jit'
I am running jupyter notebook in Docker container with requirements listed below:
numpy==1.24.3
pandas==1.4.1
scikit-learn==1.4.1.post1
pyyaml==6.0
dvc==3.48.4
mlflow==2.11.1
seaborn==0.11.2
matplotlib==3.5.1
boto3==1.18.60
jupyter==1.0.0
pandoc==2.3
ydata-profiling==4.7.0
numba==0.59.1
I am using WSL Ubuntu in Visual Studio Code. Tried to build Docker image several times now with different versions of libraries.
EDIT: Adding Traceback:
AttributeError Traceback (most recent call last)
Cell In[3], line 1
----> 1 from ydata_profiling import ProfileReport
3 profile = ProfileReport(merged_data)
4 profile.to_notebook_iframe()
File /usr/local/lib/python3.11/site-packages/ydata_profiling/__init__.py:14
10 warnings.simplefilter("ignore", category=NumbaDeprecationWarning)
12 import importlib.util # isort:skip # noqa
---> 14 from ydata_profiling.compare_reports import compare # isort:skip # noqa
15 from ydata_profiling.controller import pandas_decorator # isort:skip # noqa
16 from ydata_profiling.profile_report import ProfileReport # isort:skip # noqa
File /usr/local/lib/python3.11/site-packages/ydata_profiling/compare_reports.py:12
10 from ydata_profiling.model import BaseDescription
11 from ydata_profiling.model.alerts import Alert
---> 12 from ydata_profiling.profile_report import ProfileReport
15 def _should_wrap(v1: Any, v2: Any) -> bool:
16 if isinstance(v1, (list, dict)):
File /usr/local/lib/python3.11/site-packages/ydata_profiling/profile_report.py:25
23 from tqdm.auto import tqdm
24 from typeguard import typechecked
---> 25 from visions import VisionsTypeset
27 from ydata_profiling.config import Config, Settings, SparkSettings
28 from ydata_profiling.expectations_report import ExpectationsReport
File /usr/local/lib/python3.11/site-packages/visions/__init__.py:4
1 """Core functionality"""
3 from visions import types, typesets, utils
----> 4 from visions.backends import *
5 from visions.declarative import create_type
6 from visions.functional import (
7 cast_to_detected,
8 cast_to_inferred,
9 detect_type,
10 infer_type,
11 )
File /usr/local/lib/python3.11/site-packages/visions/backends/__init__.py:9
6 try:
7 import pandas as pd
----> 9 import visions.backends.pandas
10 from visions.backends.pandas.test_utils import pandas_version
12 if pandas_version[0] < 1:
File /usr/local/lib/python3.11/site-packages/visions/backends/pandas/__init__.py:2
1 import visions.backends.pandas.traversal
----> 2 import visions.backends.pandas.types
File /usr/local/lib/python3.11/site-packages/visions/backends/pandas/types/__init__.py:3
1 import visions.backends.pandas.types.boolean
2 import visions.backends.pandas.types.categorical
----> 3 import visions.backends.pandas.types.complex
4 import visions.backends.pandas.types.count
5 import visions.backends.pandas.types.date
File /usr/local/lib/python3.11/site-packages/visions/backends/pandas/types/complex.py:7
5 from visions.backends.pandas.series_utils import series_not_empty, series_not_sparse
6 from visions.backends.pandas.types.float import string_is_float
----> 7 from visions.backends.shared.parallelization_engines import pandas_apply
8 from visions.types.complex import Complex
9 from visions.types.string import String
File /usr/local/lib/python3.11/site-packages/visions/backends/shared/__init__.py:1
----> 1 from . import nan_handling, parallelization_engines, utilities
File /usr/local/lib/python3.11/site-packages/visions/backends/shared/nan_handling.py:34
30 # TODO: There are optimizations here, just have to define precisely the desired missing ruleset in the
31 # generated jit
32 if has_numba:
---> 34 @nb.generated_jit(nopython=True)
35 def is_missing(x):
36 """
37 Return True if the value is missing, False otherwise.
38 """
39 if isinstance(x, nb.types.Float):
AttributeError: module 'numba' has no attribute 'generated_jit'
The top API level function numba.decorated_jit
is deprecated and removed from numba version>=0.59.0.
I suggest to install last version where numba.decorated_jit
is and that is numba==0.58.1