# My Code:
import pandas as pd
# Sample data
data = {'Channel_Started': ['2013-05-18T04:46:00Z', '2018-01-16T15:55:22Z', '2016-12-12T05:00:55Z', '2020-04-29T17:18:25.574824Z', '2023-11-24T21:56:18.571502Z', '2020-06-13T05:20:37.182391Z', '2015-08-22T13:22:51Z', '2016-11-16T14:52:31Z', '2020-05-09T20:35:27.233665Z', '2022-03-16T22:09:57.246468Z', '2023-02-11T05:55:01.369504Z', '2023-03-10T12:18:40.189285Z', '2005-12-16T09:01:28Z', '2013-09-05T01:15:06Z', '2017-07-13T09:30:23Z', '2020-08-05T16:09:28.304314Z']}
# Create DataFrame
df = pd.DataFrame(data)
# Convert to datetime
df['Channel_Started'] = pd.to_datetime(df['Channel_Started'])
# Extract date
df['Channel_Started'] = df['Channel_Started'].dt.date
print(df)
Output:
# ValueError: time data "2020-04-29T17:18:25.574824Z" doesn't match format "%Y-%m-%dT%H:%M:%S%z", at position 3. You might want to try:
- passing `format` if your strings have a consistent format;
- passing `format='ISO8601'` if your strings are all ISO8601 but not necessarily in exactly the same format;
- passing `format='mixed'`, and the format will be inferred for each element individually. You might want to use `dayfirst` alongside this.
Based on the error output provided, it seems that there is an issue with the format of the datetime string "2020-04-29T17:18:25.574824Z" not matching the expected format "%Y-%m-%dT%H:%M:%S%z". The code is attempting to convert this string to a datetime object using the Pandas library in Python, but it is encountering a ValueError because the format specified does not match the actual datetime string.
I expecting This output:
Channel_Started
0 2013-05-18
1 2018-01-16
2 2016-12-12
3 2020-04-29
4 2023-11-24
5 2020-06-13
6 2015-08-22
7 2016-11-16
8 2020-05-09
9 2022-03-16
10 2023-02-11
11 2023-03-10
12 2005-12-16
13 2013-09-05
14 2017-07-13
15 2020-08-05
You have mixed formats. The actual format can be inferred for each value as follows:
import pandas as pd
data = {
"Channel_Started": [
"2013-05-18T04:46:00Z",
"2018-01-16T15:55:22Z",
"2016-12-12T05:00:55Z",
"2020-04-29T17:18:25.574824Z",
"2023-11-24T21:56:18.571502Z",
"2020-06-13T05:20:37.182391Z",
"2015-08-22T13:22:51Z",
"2016-11-16T14:52:31Z",
"2020-05-09T20:35:27.233665Z",
"2022-03-16T22:09:57.246468Z",
"2023-02-11T05:55:01.369504Z",
"2023-03-10T12:18:40.189285Z",
"2005-12-16T09:01:28Z",
"2013-09-05T01:15:06Z",
"2017-07-13T09:30:23Z",
"2020-08-05T16:09:28.304314Z",
]
}
df = pd.DataFrame(data)
df["Channel_Started"] = pd.to_datetime(df["Channel_Started"], format="mixed")
print(df)
Output:
Channel_Started
0 2013-05-18 04:46:00+00:00
1 2018-01-16 15:55:22+00:00
2 2016-12-12 05:00:55+00:00
3 2020-04-29 17:18:25.574824+00:00
4 2023-11-24 21:56:18.571502+00:00
5 2020-06-13 05:20:37.182391+00:00
6 2015-08-22 13:22:51+00:00
7 2016-11-16 14:52:31+00:00
8 2020-05-09 20:35:27.233665+00:00
9 2022-03-16 22:09:57.246468+00:00
10 2023-02-11 05:55:01.369504+00:00
11 2023-03-10 12:18:40.189285+00:00
12 2005-12-16 09:01:28+00:00
13 2013-09-05 01:15:06+00:00
14 2017-07-13 09:30:23+00:00
15 2020-08-05 16:09:28.304314+00:00