This is my code block where I created api using Flask and testing the same on POSTMAN. utils.py
utils.py
import os
import base64
from urllib.parse import urlparse
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
def get_client():
endpoint = "endpoint"
api_key = "apikey"
client = DocumentIntelligenceClient(endpoint=endpoint,credential=AzureKeyCredential(api_key))
return client
def is_file_or_url(input_string):
if os.path.isfile(input_string):
return 'file'
elif urlparse(input_string).scheme in ['http', 'https']:
return 'url'
else:
return 'unknown'
def load_file_as_base64(file_obj):
# Read the contents of the file object
data = file_obj.read()
# Encode the data as base64
base64_bytes = base64.b64encode(data)
base64_string = base64_bytes.decode('utf-8')
return base64_string
app.py
import os
from flask import Flask, request, jsonify
from pathlib import Path
from azure.ai.documentintelligence.models import AnalyzeDocumentRequest
from utils import get_client, load_file_as_base64
app = Flask(__name__)
@app.route('/extract_invoice', methods=['POST'])
def extract_invoice():
# Get the file from the request
file = request.files['file']
# Create the 'temp' directory if it doesn't exist
temp_dir = 'temp'
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
# Save the file to disk
file_path = os.path.join(temp_dir, file.filename)
file.save(file_path)
model_id = 'prebuilt-invoice'
doc_source = Path(file_path)
document_ai_client = get_client()
with open(doc_source, 'rb') as file_obj:
file_base64 = load_file_as_base64(file_obj)
poller = document_ai_client.begin_analyze_document(
model_id,
{"base64Source": file_base64},
locale="en-US",
)
result = poller.result()
# Clean up the temporary file
os.remove(file_path)
# Extract the invoice details
invoice_details = []
for document in result.documents:
document_fields = document['fields']
fields = document_fields.keys()
invoice_detail = {}
for field in fields:
if field == 'Items':
items_list = []
items = document_fields[field]
for item in items['valueArray']:
item_fields = item['valueObject']
item_dict = {}
for item_field in item_fields.keys():
value = item_fields[item_field].get('content', '')
item_dict[item_field] = value
items_list.append(item_dict)
invoice_detail[field] = items_list
else:
value = document_fields[field].get('content', '')
invoice_detail[field] = value
invoice_details.append(invoice_detail)
return jsonify(invoice_details)
if __name__ == '__main__':
app.run(debug=True)
I tried every alternative to fix the issue but its not accepting the file/its content and giving me error: ' Incorrect format, please input the right format to import'. Additionally, I also faced the following issue: 'TypeError: cannot use a string pattern on a bytes-like object'
This is the error I always get for this particular image only.
I realized your error is HTTP Status 500
It means the document_ai_client.begin_analyze_document()
has a defect during processing.
it is not a base64
decoding or encoding issue.
I made my image decoding mock server and extracted text (key/value)
Not a direct address to your server problem but I want to show your server has a problem.
demo_env
environmentDownload and install Anaconda3
Launching Anaconda Prompt
Create demo_env
and install python
conda create --name demo_env python=3.8
Switching demo_env
environment
conda activate demo_env
pip install flask easyocr
utility.py
and app.py
File tree
utility.py
import easyocr
import re
def extract_invoice_details(image_path):
reader = easyocr.Reader(['en'])
result = reader.readtext(image_path)
full_text = '\n'.join([detection[1] for detection in result])
patterns = {
'Amount': r'Amount\s*;\s*\$(\d+),(\d+)',
'Application': r'Application:\s*(.*)',
'AID': r'AID\s*:\s*(\w+)',
'MiD': r'MiD:\s*(\d+)',
'TID': r'TID:\s*(\d+)',
'Date/Time': r'Date/T\s*ime;\s*(\d{2}/\d{2}/\d{4} \d{2}:\d{2}:\d{2})'
}
extracted_items = {}
for key, pattern in patterns.items():
match = re.search(pattern, full_text)
if match:
if key == 'Amount':
extracted_items[key] = f"${match.group(1)}.{match.group(2)}"
elif key == 'Date/Time':
extracted_items[key] = match.group(1).replace(' ', '; ')
else:
extracted_items[key] = match.group(1)
return extracted_items
app.py
import os
from flask import Flask, request, jsonify
from utility import extract_invoice_details
app = Flask(__name__)
@app.route('/extract_invoice', methods=['POST'])
def extract_invoice():
# Get the file from the request
file = request.files['file']
# Create the 'temp' directory if it doesn't exist
temp_dir = 'temp'
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
# Save the file to disk
file_path = os.path.join(temp_dir, file.filename)
file.save(file_path)
# Use the utility function to process the image
invoice_details = extract_invoice_details(file_path)
# Clean up the temporary file
os.remove(file_path)
return jsonify(invoice_details)
if __name__ == '__main__':
app.run(debug=True)
subway.jpg
Your image to save locally.
demo.py
import easyocr
reader = easyocr.Reader(['en']) # 'en' is for English, you can add other languages as needed
result = reader.readtext('subway.jpg')
for detection in result:
print(detection[1]) # Prints out extracted text
subway.jpg
python demo.py
demo_v2.py
from utility import extract_invoice_details
def main():
# Specify the path to the image file
image_path = 'subway.jpg'
# Call the function from utility.py to extract invoice details
invoice_details = extract_invoice_details(image_path)
# Print the extracted details
print("Extracted Invoice Details:")
for key, value in invoice_details.items():
print(f"{key}: {value}")
if __name__ == '__main__':
main()
This code extracts only six key/value
Extract Specific Data with Regex: Using predefined regular expressions, the script searches the aggregated text for specific pieces of information such as Amount, Application, AID, MiD, TID, and Date/Time. It formats some of these pieces for consistency and clarity before returning them.
Amount ; $12,36
Application: VISA CREDIT
AID : AO000000031010
MiD: 420429002208556
TID: 75467009
Date/T ime; 06/09/2021 12:54:29
And adjust two keys
Amount ; $12,36 -> Amount: $12.36
Date/T ime; 06/09/2021 12:54:29 -> Date/Time: 06/09/2021; 12:54:29
python demo_v2.py
python app.py
subway.jpg
URL
POST http://localhost:5000/extract_invoice
Body Select Form-data
The key is file
and the value is subway.jpg
Press Send
button
Body of Response
{
"AID": "AO000000031010",
"Amount": "$12.36",
"Application": "VISA CREDIT",
"Date/Time": "06/09/2021; 12:54:29",
"MiD": "420429002208556",
"TID": "75467009"
}
I believe the issue lies with your server's internal configuration, not with the base64 encoding or Postman.