deep-learningreinforcement-learningstable-baselines

SB3 - AttributeError: 'DummyVecEnv' object has no attribute 'get_action_meanings'


When I try to combine the SB3 vec_env with AtariWrapper, I get an error -

import gymnasium as gym

from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.atari_wrappers import AtariWrapper

# Parallel environments
# vec_env = gym.make("PongNoFrameskip-v4")
vec_env = make_vec_env("PongNoFrameskip-v4", n_envs=2, seed=3)
vec_env = AtariWrapper(vec_env)
model = PPO("CnnPolicy", vec_env, verbose=1, n_steps=128, n_epochs=4,
            batch_size=256, learning_rate=2.5e-4, clip_range=0.1,
            vf_coef=0.5, ent_coef=0.01)
model.learn(total_timesteps=1e7)
model.save("ppo_cartpole")

I get this error -

A.L.E: Arcade Learning Environment (version 0.8.1+53f58b7)
[Powered by Stella]
Traceback (most recent call last):
  File "D:\q_learning\sb3_ppo.py", line 10, in <module>
    vec_env = AtariWrapper(vec_env)
  File "C:\Users\thoma\anaconda3\envs\torch_2\lib\site-packages\stable_baselines3\common\atari_wrappers.py", line 294, in __init__
    env = NoopResetEnv(env, noop_max=noop_max)
  File "C:\Users\thoma\anaconda3\envs\torch_2\lib\site-packages\stable_baselines3\common\atari_wrappers.py", line 57, in __init__
    assert env.unwrapped.get_action_meanings()[0] == "NOOP"  # type: ignore[attr-defined]
AttributeError: 'DummyVecEnv' object has no attribute 'get_action_meanings'

Process finished with exit code 1

However, I don't get an error if I use the AtariWrapper with a gymnasium environment -

vec_env = gym.make("PongNoFrameskip-v4")
# vec_env = make_vec_env("PongNoFrameskip-v4", n_envs=2, seed=3)
vec_env = AtariWrapper(vec_env)
model = PPO("CnnPolicy", vec_env, verbose=1, n_steps=128, n_epochs=4,
            batch_size=256, learning_rate=2.5e-4, clip_range=0.1,
            vf_coef=0.5, ent_coef=0.01)
model.learn(total_timesteps=1e7)
model.save("ppo_cartpole")

Solution

  • I managed to solve using

    vec_env.envs[0].unwrapped.get_action_meanings()
    

    envs is a list of environments