pythonpandasexcelanalysisnp

How to modify large amounts of data using pandas


As shown in this code, I need to use certain data in one table as a basis to modify another table and add some information. When this kind of table information scale is large, this violent traversal method is very inefficient. How should I modify it? Moreover, multiple sheets need to be compared, which makes the efficiency even lower.

df = pd.DataFrame({'id': [123, 321, 456, 543], 'name': ['xxx', 'yyy', 'zzz', 'www']})
df.set_index('id', inplace=True)
df_1 = pd.DataFrame({'id': [123, 321, 456, 543], 'name': ['xxx', 'yyy', 'zzz', 'www'], 'complete': ['yes', 'yes', 'yes', 'yes'], 'course_name':['AA', 'BB', 'AA', 'DD'], 'complete_date': ['1.1', '1.2', '1.1', '1.5']})
df_1.set_index('id', inplace=True)
group_df = df_1.groupby('course_name')
info = dict()
for course_name, course_df in group_df:
    info[course_name]=[]
    def process(row):
            info[course_name].append(Subscriber(*row.tolist()))

    get_info = course_df.loc[course_df["complete"] == "yes"]
    get_columns = ['name', 'complete_date']
    finish_df = get_info[get_columns]
    Subscriber = namedtuple('Subscriber', ['name', 'complete_date'])
    finish_df.apply(process, axis = 1)
# print(info)
# {'AA': [Subscriber(name='xxx', complete='yes'), Subscriber(name='zzz', complete='yes')], 'BB': [Subscriber(name='yyy', complete='yes')], 'DD': [Subscriber(name='www', complete='yes')]}
'''modify df'''
names = set(df['name'])
for course in info.keys():
      for name, date in info[course]:
            if name in names:
                  df.loc[df['name'] == name, course] = date + 'yes' 
                  pass
# print(df)

Solution

  • As Ben.T is pointing out in the comments, a pivot approach would do the job. Here is an example of how you can do this:

    import pandas as pd
    from collections import namedtuple
    
    df = pd.DataFrame({'id': [123, 321, 456, 543], 'name': ['xxx', 'yyy', 'zzz', 'www']})
    df_1 = pd.DataFrame({'id': [123, 321, 456, 543], 'name': ['xxx', 'yyy', 'zzz', 'www'], 'complete': ['yes', 'yes', 'yes', 'yes'], 'course_name': ['AA', 'BB', 'AA', 'DD'], 'complete_date': ['1.1', '1.2', '1.1', '1.5']})
    
    completed_courses = df_1[df_1['complete'] == 'yes']
    
    pivot_df = completed_courses.pivot_table(index='id', columns='course_name', values='complete_date', aggfunc='first')
    
    result_df = df.set_index('id').join(pivot_df, on='id')
    result_df = result_df.fillna('')
    
    for col in pivot_df.columns:
        result_df[col] = result_df[col].apply(lambda x: 'yes' if x != '' else x)
    
    result_df.reset_index(inplace=True)
    print(result_df)
    
    

    which gives you

        id name   AA   BB   DD
    0  123  xxx  yes          
    1  321  yyy       yes     
    2  456  zzz  yes          
    3  543  www            yes