[PROBLEM - My final solution below]
I'd like to import a json file containing my data into Neo4J. However, it is super slow.
The Json file is structured as follow
{
"graph": {
"nodes": [
{ "id": 3510982, "labels": ["XXX"], "properties": { ... } },
{ "id": 3510983, "labels": ["XYY"], "properties": { ... } },
{ "id": 3510984, "labels": ["XZZ"], "properties": { ... } },
...
],
"relationships": [
{ "type": "bla", "startNode": 3510983, "endNode": 3510982, "properties": {} },
{ "type": "bla", "startNode": 3510984, "endNode": 3510982, "properties": {} },
....
]
}
}
Is is similar to the one proposed here: How can I restore data from a previous result in the browser?.
By looking at the answer. I discovered that I can use
CALL apoc.load.json("file:///test.json") YIELD value AS row
WITH row, row.graph.nodes AS nodes
UNWIND nodes AS node
CALL apoc.create.node(node.labels, node.properties) YIELD node AS n
SET n.id = node.id
and then
CALL apoc.load.json("file:///test.json") YIELD value AS row
with row
UNWIND row.graph.relationships AS rel
MATCH (a) WHERE a.id = rel.endNode
MATCH (b) WHERE b.id = rel.startNode
CALL apoc.create.relationship(a, rel.type, rel.properties, b) YIELD rel AS r
return *
(I have to do it in two times because else their are relation duplication due to the two unwind
).
But this is super slow because I have a lot of entities and I suspect the program to search over all of them for each relation.
At the same time, I know "startNode": 3510983
refers to a node.
So the question: does it exists anyway to speed up to import process using ids as index, or something else?
Note that my nodes have differents types. So I did not find a way to create an index for all of them, and I suppose that would be too huge (memory)
[MY SOLUTION - not efficient answer 1]
CALL apoc.load.json('file:///test.json') YIELD value
WITH value.graph.nodes AS nodes, value.graph.relationships AS rels
UNWIND nodes AS n
CALL apoc.create.node(n.labels, apoc.map.setKey(n.properties, 'id', n.id)) YIELD node
WITH rels, COLLECT({id: n.id, node: node, labels:labels(node)}) AS nMap
UNWIND rels AS r
MATCH (w{id:r.startNode})
MATCH (y{id:r.endNode})
CALL apoc.create.relationship(w, r.type, r.properties, y) YIELD rel
RETURN rel
[Final Solution in comment]
The final answer that seems also efficient is the following one:
It is inspired by the solution and discussion of this answer https://stackoverflow.com/a/61464839/5257140
Major updates are:
CALL apoc.load.json('file:///test-graph.json') YIELD value
WITH value.nodes AS nodes, value.relationships AS rels
UNWIND nodes AS n
CALL apoc.create.node(n.labels, apoc.map.setKey(n.properties, 'id', n.id)) YIELD node
WITH rels, apoc.map.fromPairs(COLLECT([n.id, node])) AS nMap
UNWIND rels AS r
WITH r, nMap[TOSTRING(r.startNode)] AS startNode, nMap[TOSTRING(r.endNode)] AS endNode
WHERE startNode IS NOT NULL and endNode IS NOT NULL
CALL apoc.create.relationship(startNode, r.type, r.properties, endNode) YIELD rel
RETURN rel