I am trying to filter a dataframe to find the first occurrence of a maximum value over a category column. In my data there is no guarantee that there is a single unique maximum value, there could be multiple values, but i only need the first occurance.
Yet I can't seem to find a way to limit the max part of the filter, currently I am then adding a further filter on another column generally a time based one and taking the minimum value.
df = pl.DataFrame(
{
"cat": [1, 1, 1, 2, 2, 2, 2, 3, 3, 3],
"max_col": [12, 24, 36, 15, 50, 50, 45, 20, 40, 60],
"other_col": [25, 50, 75, 125, 150, 175, 200, 225, 250, 275],
}
)
df = df.filter(pl.col("max_col") == pl.col("max_col").max().over("cat")).filter(
pl.col("other_col") == pl.col("other_col").min().over("cat")
)
shape: (3, 3)
┌─────┬─────────┬───────────┐
│ cat ┆ max_col ┆ other_col │
│ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 │
╞═════╪═════════╪═══════════╡
│ 1 ┆ 36 ┆ 75 │
│ 2 ┆ 50 ┆ 150 │
│ 3 ┆ 60 ┆ 275 │
└─────┴─────────┴───────────┘
However, I'd prefer to simplify the above to only require passing in references to the max and category columns.
Am I missing something obvious here?
EDIT: Added example dataframe and output.
You can add .is_first_distinct()
to the filter to keep only the first max.
df.filter(
pl.all_horizontal(
pl.col("max_col") == pl.col("max_col").max(),
pl.col("max_col").is_first_distinct()
)
.over("cat")
)
shape: (3, 3)
┌─────┬─────────┬───────────┐
│ cat ┆ max_col ┆ other_col │
│ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 │
╞═════╪═════════╪═══════════╡
│ 1 ┆ 36 ┆ 75 │
│ 2 ┆ 50 ┆ 150 │
│ 3 ┆ 60 ┆ 275 │
└─────┴─────────┴───────────┘