pythonmathscipywolfram-mathematicasparse-matrix

Efficient scipy sparse array and kronecker product computation


I want to compute the Kronecker product of a long list of small matrices (say, Pauli matrices). I tried to define the small matrices using scipy.sparse.csr_array, and use scipy.sparse.kron to perform the Kronecker product. However, the performance isn't ideal.


import numpy as np
from scipy import sparse
import functools
import time


sigma_x = sparse.csr_array(np.array([[0, 1], [1, 0]]))
sigma_y = sparse.csr_array(np.array([[0, -1j], [1j, 0]]))
sigma_z = sparse.csr_array(np.array([[1., 0], [0, -1.]]))

sigma = [sigma_x, sigma_y, sigma_z]
arguments = [sigma[i % 3] for i in range(3 * 5)]


start_time = time.time()

result = functools.reduce(sparse.kron, arguments)

end_time = time.time()
execution_time = end_time - start_time
print(execution_time)

=== Update 2 ===

Found a simple fix: I should use format='csr' keyword when calling sparse.kron. So I define

def kron_csr(x, y):
    return sparse.kron(x, y, format='csr')

and then

arguments = [sigma[i % 3] for i in range(3 * 5)]
result = functools.reduce(kron_csr, arguments)

would yield the result in just 0.005 second.


=== Update 1 ===

Following a comment below, I split the computation into two steps, first compute the Kronecker product of 3 * 4 Pauli matrices, then compute the Kronecker product of that result with the last 3 Pauli matrices,

start_time = time.time()
arguments = [sigma[i % 3] for i in range(3 * 4)] # reduces to 3 * 4
first = functools.reduce(sparse.kron, arguments)
second = functools.reduce(sparse.kron, [sigma_x, sigma_y, sigma_z])
result = functools.reduce(sparse.kron, [first, second])

end_time = time.time()
execution_time = end_time - start_time
print(execution_time)

or first compute the Kronecker product of sigma_x, sigma_y, sigma_z, then compute the Kronecker product of five of this intermediate matrices,

start_time = time.time()
result_1 = functools.reduce(sparse.kron, sigma)
result = functools.reduce(sparse.kron, [result_1 for i in range(5)])
end_time = time.time()
execution_time = end_time - start_time

The performance improves to around 4~9 seconds.


The execution time gives something like 11 seconds. The same computatoin using Mathematica only takes around 0.01 second,

Sigma = {SparseArray[( {
      {0, 1},
      {1, 0}
     } )], SparseArray[( {
      {0, -I},
      {I, 0}
     } )], SparseArray[( {
      {1, 0},
      {0, -1}
     } )]};

((KroneckerProduct @@ 
     Join @@ Table[{Sigma[[1]], Sigma[[2]], Sigma[[3]]}, {i, 5}]) // 
   Timing)[[1]]

I wonder how to improve the python code performence (hopefully to something like that in Mathematica)?


Solution

  • You can solve the subproblems by which you can make it somewhat efficient:

    import numpy as np
    from scipy import sparse
    import functools
    import time
    
    
    def _kron():
        sigma_x = sparse.csr_matrix(np.array(((0, 1), (1, 0))))
        sigma_y = sparse.csr_matrix(np.array(((0, -1j), (1j, 0))))
        sigma_z = sparse.csr_matrix(np.array(((1, 0), (0, -1))))
    
        sigma = (sigma_x, sigma_y, sigma_z)
    
        kron_csr = lambda x, y: sparse.kron(x, y, format='csr')
    
        def _product(sigma, repeat):
            arguments = (sigma[i % 3] for i in range(3 * repeat))
            return functools.reduce(kron_csr, arguments)
    
        start_time = time.time()
        result = _product(sigma, 5)
        end_time = time.time()
        execution_time = end_time - start_time
        return f"Execution time: {execution_time} seconds"
    
    print(_kron())