I want to convert a large dataframe to a series of report tables that replicates the template for each unique id within the dataframe seperated/skipped excel row. I would like to do this with a series of loops. I think I can accomplish through mapping each item in the df to an excel file... but it would take several thousand lines based on the size of the dataframe - any help would be much appreciated!!
import pandas as pd
data = {'id' = [1,2,3]
, 'make' = ['ford','chevrolet','dodge']
, 'model' = ['mustang','comaro','challenger']
, 'year' = ['1969','1970','1971']
, 'color' = ['blue', 'red', 'green']
, 'miles' = ['15000','20000','35000']
, 'seats' = ['leather', 'cloth' , 'leather']
}
df = pd.DataFrame(data)
df.to_excel(r'/desktop/reports/output1.xlsx')
Proposed outcome in excel (one row is skipped between id groupings):
A B C D E F
1 make ford year 1969 miles 15000
2 model mustang color blue seats leather
3
4 make chevrolet year 1970 miles 20000
5 model comaro color red seats cloth
6
7 make dodge year 1971 miles 35000
8 model challenger color green seats leather
Code
i think don't need loop. reshape your data frame
# melt & sort
tmp = df.melt('id', var_name='a', value_name='b').sort_values('id', kind='stable')
# make id's cumcount to variable s
s = tmp.groupby('id').cumcount()
# assign 'row' and 'col' column based on variable s
tmp['row'], tmp['col'] = s % 2, s // 2
# pivot & sort
tmp = (tmp.pivot(index=['id', 'row'], columns='col')
.swaplevel(0, 1, axis=1).sort_index(axis=1).droplevel(0, axis=1)
)
tmp:
# create variable idx(MultiIndex) for making blank rows
idx = pd.MultiIndex.from_product([df['id'].unique(), [0, 1, 2]])
# reindex with idx & save to Excel file without index and header
tmp.reindex(idx).to_excel('result.xlsx', index=False, header=False)
result.xlsx: