c++multithreadingalgorithmhashmapgrouping

Fastest key value grouping


Given an array of <key, value> pairs, what is the state-of-the-art approach to group the keys together by values?

#include <vector>
#include <random>
#include <execution>
#include <unordered_map>
#include <iostream>
#include <tbb/concurrent_unordered_map.h>
#include <tbb/concurrent_vector.h>
#include <chrono>


template<typename timetype = std::chrono::microseconds>
struct tiktok
{
  std::vector<std::chrono::time_point<std::chrono::steady_clock> > starts;
  void reset() { starts.reserve(50); starts.resize(0); }
  tiktok() { reset(); }
  std::size_t tik() {  
    starts.emplace_back(std::chrono::steady_clock::now()); 
    return 0; 
  }
  std::size_t tok() { 
    std::size_t rst = std::chrono::duration_cast<timetype> (
      std::chrono::steady_clock::now() - starts.back()).count();
    starts.pop_back();
    return rst;
  }
};


int main()
{
  int NuniqueString = 3e5;
  std::vector<std::string > x(NuniqueString);
  std::mt19937 rng(123);
  for (auto& u: x) { 
    u = std::string(rng() % 1024 + 1, ' ');
    char* c = &u[0];
    for (int i = 0, iend = u.size(); i < iend; ++i)
      c[i] = rng() % 256;
  } 
  
  // The key-value pair definition.
  struct Item { int key; std::string s; };
  std::vector<Item> items(x.size() * 10);
  for (int i = 0, iend = items.size(); i < iend; ++i) { 
    items[i].key = i;
    items[i].s = x[rng() % NuniqueString];
  } 
  auto itemsReserve = items;
  
  // Measure time cost for grouping items' keys, using STL unordered_map
  tiktok timer;
  if constexpr (true) { 
    std::unordered_map<
      std::string, std::vector<int> > H (items.size() * 1.3);
    timer.tik();
    std::for_each(items.begin(), items.end(), [&](auto& i)->void { 
      H[std::move(i.s)].push_back(i.key);
    }); 
    std::cout << "Sequential, use STL unordered_map time cost (ms) = " << 
      timer.tok() << "\n\n";
  } 
  
  // Measure time cost using tbb concurrent unordered_map and concurrent vector.
  if constexpr (true) { 
    items = itemsReserve;
    tbb::concurrent_unordered_map<
      std::string, tbb::concurrent_vector<int>, 
      std::hash<std::string> > H(items.size() * 1.3);
    timer.tik();
    std::for_each( std::execution::par_unseq, items.begin(), 
                   items.end(), [&](auto& i)->void { 
        auto it = H.insert(std::pair(
          std::move(i.s),
          tbb::concurrent_vector<int>()));
        it.first->second.push_back(i.key);
      }); 
    std::cout << "Parallel, use tbb concurrent unordered_map and"
    " concurrent vector time cost (ms) = " << timer.tok() << "\n\n";
  }
}

g++ -std=c++20 groupStrings.cpp -Ofast -march=native -o test -ltbb on a 16-core machine produces the following:

Sequential, use STL unordered_map time cost (ms) = 1700035

Parallel, use tbb concurrent unordered_map and concurrent vector time cost (ms) = 1575196

I need to frequently perform such groupings for massive arrays of key-value pairs. To start rolling my own treatment, is there any SOTA approach for solving it?


Solution

  • The problem is that the strings should not be moved into tbb::concurrent_unordered_map:

    #include <vector>
    #include <random>
    #include <execution>
    #include <unordered_map>
    #include <iostream>
    #include <tbb/concurrent_unordered_map.h>
    #include <tbb/concurrent_vector.h>
    #include <chrono>
    
    
    template<typename timetype = std::chrono::microseconds>
    struct tiktok
    {
      std::vector<std::chrono::time_point<std::chrono::steady_clock> > starts;
      void reset() { starts.reserve(50); starts.resize(0); }
      tiktok() { reset(); }
      std::size_t tik() {  
        starts.emplace_back(std::chrono::steady_clock::now()); 
        return 0; 
      }
      std::size_t tok() { 
        std::size_t rst = std::chrono::duration_cast<timetype> (
          std::chrono::steady_clock::now() - starts.back()).count();
        starts.pop_back();
        return rst;
      }
    };
    
    
    int main()
    {
      int NuniqueString = 3e5;
      std::vector<std::string > x(NuniqueString);
      std::mt19937 rng(123);
      for (auto& u: x) { 
        u = std::string(rng() % 1024 + 1, ' ');
        char* c = &u[0];
        for (int i = 0, iend = u.size(); i < iend; ++i)
          c[i] = rng() % 256;
      } 
      
      // The key-value pair definition.
      struct Item { int key; std::string s; };
      std::vector<Item> items(x.size() * 10);
      for (int i = 0, iend = items.size(); i < iend; ++i) { 
        items[i].key = i;
        items[i].s = x[rng() % NuniqueString];
      } 
      auto itemsReserve = items;
      
      // Measure time cost for grouping items' keys, using STL unordered_map
      tiktok timer;
      if constexpr (true) { 
        std::unordered_map<
          std::string, std::vector<int> > H (items.size() * 1.3);
        timer.tik();
        std::for_each(items.begin(), items.end(), [&](auto& i)->void { 
          H[std::move(i.s)].push_back(i.key);
        }); 
        std::cout << "Sequential, use STL unordered_map time cost (ms) = " << 
          timer.tok() << "\n\n";
      } 
      
      // Measure time cost using tbb concurrent unordered_map and concurrent vector.
      if constexpr (true) { 
        items = itemsReserve;
        tbb::concurrent_unordered_map<
          std::string, tbb::concurrent_vector<int>, 
          std::hash<std::string> > H(items.size() * 1.3);
        timer.tik();
        std::for_each( std::execution::par_unseq, items.begin(), 
                       items.end(), [&](auto& i)->void { 
            auto it = H.insert(std::pair(
              i.s, // std::move(i.s),
              tbb::concurrent_vector<int>()));
            it.first->second.push_back(i.key);
          }); 
        std::cout << "Parallel, use tbb concurrent unordered_map and"
        " concurrent vector time cost (ms) = " << timer.tok() << "\n\n";
      }
    }
    

    This prints:

    Sequential, use STL unordered_map time cost (ms) = 1691195
    
    Parallel, use tbb concurrent unordered_map and concurrent vector time cost (ms) = 423323
    

    4x speedup is not bad. But now the question is, why is moving the resource much slower than copying? My intuition is that, every call for std::move() requires the thread write to the string's header (a 24-byte block if I am right) for setting the pointers to nullptr. Because these headers are contiguous in memory, the writes will constantly attack the same cache line (64-byte block). Cache coherence mechanism kicks in and slows it down. In short, false sharing https://en.wikipedia.org/wiki/False_sharing. I'd waste more time if had not missed std::move by accident. Tricky tricky..

    @David Eisenstat 's suggestion is great. parlay::group_by_key() is very easy to use and is about 1.5x faster than the tbb::concurrent_unordered_map approach. Highly recommend it.