I am trying to make a symbolic derivation function in Chez scheme. It works alright-ish (simplification is not yet being done):
(define (derive var expr)
;; var is the direction in which you would like to derive
(if (list? expr)
(case (car expr)
('+ (sum-rule var expr))
('- (sub-rule var expr))
('* (prod-rule var expr))
;; other rules
(else (atomic-rule var expr )))
(atomic-rule var expr)))
(define (atomic-rule var expr)
(if (list? expr)
expr
(if (eqv? var expr)
1
0)))
(define (sum-rule var expr)
(let ((args (cdr expr)))
`(+ ,@(map (lambda (e) (derive var e)) args))))
(define (sub-rule var expr)
(let ((args (cdr expr)))
`(- ,@(map (lambda (e) (derive var e)) args))))
(define (prod-rule var expr)
(let* ((args (cdr expr))
(f (car args))
(g (cadr args)))
`(+ (* ,f ,(derive var g))
(* ,g ,(derive var f)))))
I can do(derive 'x '(+ (* x x) (* x y)))
and get (+ (+ (* x 1) (* x 1)) (+ (* x 0) (* y 1)))
which is correct. But I'd also like to programmatically create functions that return numerical values from those expressions.
My attempts have failed:
(define (lambda-derive var expr)
(let ([derivative (derive var expr)])
(lambda (var) derivative)))
((lambda-derive 'x '(* x x)) 2) => (+ (* x 1) (* x 1)) ;; should be 4
(define-syntax lbd-macro
(lambda (context)
(syntax-case context ()
[(k expr var )
(with-syntax ([new-var (datum->syntax #'k (syntax->datum #'var))])
#'(lambda (new-var) expr))])))
((lbd-macro (derive 'x '(* x x)) x) 2) => (+ (* x 1) (* x 1)) ;; should be 4
I feel like I am missing something very obvious. Can someone provide a light? (Yes I know the attempts do not cover multi-variate cases)
==EDIT==
I had a bad night of sleep and decided to keep working, and I've arrived in a similar solution to what @ignis volens described, albeit using hash-tables and being way more hacky:
(define (lambda-aux variables vals expr)
(let ((ht (make-eqv-hashtable (length variables))))
(for-each (lambda (k v) (hashtable-set! ht k v)) variables vals)
(let loop ((expr expr))
(if (list? expr)
(let ((op (car expr))
(args (map loop (cdr expr))))
(cons op args))
(let ((variable (hashtable-ref ht expr #f)))
(if variable
variable
(if (number? expr)
expr
(error "variable not found"))))))))
(define-syntax lambda-derive
(syntax-rules ()
[(_ expr var var* ...)
(lambda (var var* ...) (eval (lambda-aux '(var var* ...) (list var var* ...) (derive 'var 'expr) )))]))
Which can be used like so:
(define my-test-derivative
;;f(x,y) = x^2 + x * y
;;df/dx (x,y) = 2*x + y
(lambda-derive (+ (* x y) (* x x)) x y))
(my-test-derivative 2 2) => 6
(my-test-derivative 8 2) => 18
;; ...
This is a case where you either want to clench your teeth and use eval
:
(eval `(lambda (x) ,(derive 'x '(* x x))) (scheme-report-environment 5))
will return a function of one argument which will evaluate the derivative of (* x x)
for a given value of x
(I am assuming R5RS here, as I don't have Chez Scheme):
> (let ((d (eval `(lambda (x) ,(derive 'x '(* x x))) (scheme-report-environment 5))))
(d 1))
2
Or, arguably better (and certainly more safely) you can write a symbolic expression evaluator. Again this is R5RS:
(define (evaluate-symbolic-expression expression bindings)
;; Evaluate a symbolic expression in the presence of bindings
(cond
((number? expression)
expression)
((symbol? expression)
(let ((found (assq expression bindings)))
(if found
(evaluate-symbolic-expression (cadr found) bindings)
expression)))
((pair? expression)
(apply-symbolic-operator
(car expression)
(map (lambda (e) (evaluate-symbolic-expression e bindings))
(cdr expression))
bindings))
(else
expression)))
(define (all-numbers? l)
(cond
((null? l)
#t)
((number? (car l))
(all-numbers? (cdr l)))
(else
#f)))
(define (apply-symbolic-operator op args bindings)
(if (all-numbers? args)
(let ((f (assq op bindings)))
(if f
(apply (cadr f) args)
`(,op ,@args)))
`(,op ,@args)))
(define arithmetic-operator-bindings
`((+ ,+)
(- ,-)
(* ,*)
(/ ,/)))
And now
> (evaluate-symbolic-expression
(derive 'x '(* x x))
(append '((x 4)) arithmetic-operator-bindings))
8
evaluate-symbolic-expression
could be more clearly written: it started off implementing an evaluator for what was essentially a tiny Lisp-2, but I changed it and was too lazy to redo it all.