I’m working on a rather simple version of the VRP. To the example provided on the OR-Tools website, I’ve added just one constraint. Specifically, there are 3 vehicles: A, B, and C, and 16 locations. All vehicles start and return to the depot, which is considered as location 0. The only constraint I introduced using the routing.SetAllowedVehiclesForIndex command is that vehicle A can visit all locations, vehicle B can visit locations 1, 2,..., 8, and vehicle C can visit locations 9, 10,..., 16.
For the local search algorithm, I used global local search, while for the first solution algorithm, I tried all the ones available.
The problem is that when I get a result, regardless of the type of algorithm used for the first solution search, vehicle A is not assigned to any locations. Is it possible to solve this issue? If so, how?
Here is the code below:
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
specific_locations = [
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],
[1,2,3,4,5,6,7,8],
[9,10,11,12,13,14,15,16]
]
def create_data_model():
"""Stores the data for the problem."""
data = {}
data["distance_matrix"] = [
# fmt: off
[0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
[548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
[776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
[696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
[582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
[274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
[502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
[194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
[308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
[194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
[536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
[502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
[388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
[354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
[468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
[776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
[662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0],
# fmt: on
]
data["num_vehicles"] = 3
data["depot"] = 0
return data
def print_solution(data, manager, routing, solution):
"""Prints solution on console."""
print(f"Objective: {solution.ObjectiveValue()}")
max_route_distance = 0
for vehicle_id in range(data["num_vehicles"]):
index = routing.Start(vehicle_id)
plan_output = f"Route for vehicle {vehicle_id}:\n"
route_distance = 0
while not routing.IsEnd(index):
plan_output += f" {manager.IndexToNode(index)} -> "
previous_index = index
index = solution.Value(routing.NextVar(index))
route_distance += routing.GetArcCostForVehicle(
previous_index, index, vehicle_id
)
plan_output += f"{manager.IndexToNode(index)}\n"
plan_output += f"Distance of the route: {route_distance}m\n"
print(plan_output)
max_route_distance = max(route_distance, max_route_distance)
print(f"Maximum of the route distances: {max_route_distance}m")
def main():
"""Entry point of the program."""
# Instantiate the data problem.
data = create_data_model()
# Create the routing index manager.
manager = pywrapcp.RoutingIndexManager(
len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
)
# Create Routing Model.
routing = pywrapcp.RoutingModel(manager)
# Create and register a transit callback.
def distance_callback(from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data["distance_matrix"][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(distance_callback)
# Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Add Distance constraint.
dimension_name = "Distance"
routing.AddDimension(
transit_callback_index,
0, # no slack
3000, # vehicle maximum travel distance
True, # start cumul to zero
dimension_name,
)
distance_dimension = routing.GetDimensionOrDie(dimension_name)
distance_dimension.SetGlobalSpanCostCoefficient(100)
for i in range(data["num_vehicles"]):
for j in range(len(specific_locations[i])):
routing.SetAllowedVehiclesForIndex([i], manager.NodeToIndex(specific_locations[i][j]))
# Setting first solution heuristic.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
)
search_parameters.local_search_metaheuristic = (
routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH
)
search_parameters.time_limit.seconds = 30
# Solve the problem.
solution = routing.SolveWithParameters(search_parameters)
# Print solution on console.
if solution:
print_solution(data, manager, routing, solution)
else:
print("No solution found !")
if __name__ == "__main__":
main()
The solution I get is:
Objective: 267648
Route for vehicle 0:
0 -> 0
Distance of the route: 0m
Route for vehicle 1:
0 -> 5 -> 8 -> 6 -> 2 -> 1 -> 4 -> 3 -> 7 -> 0
Distance of the route: 2624m
Route for vehicle 2:
0 -> 9 -> 10 -> 16 -> 14 -> 13 -> 15 -> 11 -> 12 -> 0
Distance of the route: 2624m
Maximum of the route distances: 2624m
Press any key to continue . . .
each call to SetAllowedVehiclesForIndex
on a given index overwrite the previous call on the same index.
You need to collect all vehicles for a given index.