I want to do the same as asked here, using the first approach from the question.
Sadly, the mods
variable from the following line is not defined and I'm asking my self how to adjust:
g2 <- delete.edges(out, wc$removed.edges[seq(length = which.max(mods) - 1)])
However, I guess the function edge.betweenness.community
is old and the newer version I use is adjusted like:
wc <- cluster_edge_betweenness(out, weights = (E(out)$value, directed = FALSE, bridges = TRUE, membership = TRUE, modularity = TRUE)
However, I struggle to adjust the delete.edge
function –
the first call deletes too many edges, and the second one too few:
out2 <- delete.edges(out, wc$removed.edges[seq(length = which.max(wc$modularity))])
out2 <- delete.edges(out, wc$removed.edges[which.max(wc$modularity)])
Just for completeness I add the data from the cited question:
from to value sourceID targetID
1 74 80 0.2829 255609 262854
2 74 61 0.2880 255609 179585
3 80 1085 0.2997 262854 3055482
4 1045 1046 0.1842 2970629 2971615
5 1046 1085 0.2963 2971615 3055482
6 1046 1154 0.2714 2971615 3087803
7 1085 1154 0.2577 3055482 3087803
8 1085 1187 0.2850 3055482 3101131
9 1085 1209 0.2850 3055482 3110186
10 1154 1243 0.2577 3087803 3130848
11 1154 1187 0.2305 3087803 3101131
12 1154 1209 0.2305 3087803 3110186
13 1154 1244 0.2577 3087803 3131379
14 1243 1187 0.1488 3130848 3101131
15 1243 1209 0.1488 3130848 3110186
16 1243 1244 0.1215 3130848 3131379
17 1243 1281 0.2997 3130848 3255811
Instead of using delete.edges
, I think you can use disjoint_union
+ induced_subgraph
like below
g <- graph_from_data_frame(df)
ceb <- cluster_edge_betweenness(g)
out <- do.call(
disjoint_union,
lapply(groups(ceb), \(x) induced_subgraph(g, x))
)
and the plots look like
par(mfrow = c(2, 1))
plot(ceb, g, main = "Edge betweenness")
plot(cluster_edge_betweenness(out), out, main = "Disjoint union")