pythondrawing

How can I optimize this python code to give me the most detail in the least amount of lines


I have this python code which takes an image, and converts it into something that can be drawn by Blot By Hackclub. Blot has a very simple coordinate to coordinate draws a line system. Currently this code generates 80000 lines, I want to bring that down without losing much detail. Any suggestions. https://github.com/GeoWizard4645/BlotInator/blob/main/README.md

from PIL import Image, ImageOps
import numpy as np
import cv2
import matplotlib.pyplot as plt
from skimage import measure, transform
import math


# Set the detail level (1 for maximum detail, 0 for minimal detail)
detail_level = 0.8  # Higher detail level for better quality

# Function to process the image and extract edges with higher precision
def process_image(image_path):
    # Load image and convert to grayscale
    image = Image.open(image_path).convert("L")
    image = ImageOps.mirror(image)  # Mirror the image horizontally
    image = ImageOps.invert(image)  # Invert to make the background black and foreground white
    image = image.rotate(180)  # Rotate the image by 180 degrees
    image_array = np.array(image)

    # Calculate ksize (ensuring it's odd and positive)
    ksize_value = max(3, int(round(-3.333333333333 * detail_level + 5.666666666666666667)))
    if ksize_value % 2 == 0:
        ksize_value += 1
    ksize = (ksize_value, ksize_value)

    # Apply a slight blur to reduce noise
    blurred = cv2.GaussianBlur(image_array, ksize, 0)

    # Use Canny edge detection with lower thresholds for more sensitivity
    canny_threshold1 = int(round(-33.333333333 * detail_level + 56.6666666666667))
    canny_threshold2 = int(round(-83.33333333 * detail_level + 166.666666667))
    edges = cv2.Canny(blurred, canny_threshold1, canny_threshold2)

    # Optionally, thicken the edges slightly
    edges = transform.rescale(edges, 1.0, anti_aliasing=True)
    edges = cv2.dilate(edges, np.ones((2,2),np.uint8), iterations=1)

    # Use contours to find connected components
    contours = measure.find_contours(edges, 0.8)
    
    return contours, image_array.shape

# Function to generate the Blot code
def generate_blot_code(contours, dimensions, detail_level=0.8):
    maxDimension_y = 0
    maxDimension_x = 0    
    print("Generating Blot code...")
    lines = []
    
    # Set a fixed tolerance for fine control over details
    if -15 * detail_level + 13>0:
        max_tolerance =  -15 * detail_level + 13>0 # High tolerance for significant simplification
    else :
        max_tolerance = 0.1
    if -15 * detail_level + 13>0:
        min_tolerance =  -1.5 * detail_level + 1.3>0 # High tolerance for significant simplification
    else :
        min_tolerance = 0.01
    tolerance = (1 - detail_level) * (max_tolerance - min_tolerance) + min_tolerance
    
    # Calculate bounding box of all contours
    all_points = np.concatenate(contours)
    min_y, min_x = np.min(all_points, axis=0)
    max_y, max_x = np.max(all_points, axis=0)
    
    # Calculate scale and translation to center the drawing
    scale_x = (dimensions[1] - 1) / (max_x - min_x)
    scale_y = (dimensions[0] - 1) / (max_y - min_y)
    scale = min(scale_x, scale_y)  # Maintain aspect ratio by using the smallest scale factor
    
    translate_x = (dimensions[1] - (max_x - min_x) * scale) / 2 - min_x * scale
    translate_y = (dimensions[0] - (max_y - min_y) * scale) / 2 - min_y * scale
    
    for contour in contours:
        # Smooth the contour and simplify based on the detail level
        smoothed_contour = measure.approximate_polygon(contour, tolerance=tolerance)
        if len(smoothed_contour) >= 2:  # Only consider meaningful contours
            for i in range(len(smoothed_contour) - 1):
                y1, x1 = smoothed_contour[i]
                y2, x2 = smoothed_contour[i + 1]
                
                # Scale and translate coordinates
                x1 = int(x1 * scale + translate_x)
                y1 = int(y1 * scale + translate_y)
                x2 = int(x2 * scale + translate_x)
                y2 = int(y2 * scale + translate_y)
                
                lines.append(f"finalLines.push([[{x1}, {y1}], [{x2}, {y2}]]);\n")
                if x1 > maxDimension_x:
                    maxDimension_x = x1 +5
                if x2 > maxDimension_x:
                    maxDimension_x = x2 +5
                if y1 > maxDimension_x:
                    maxDimension_x = y1 +5
                if y2 > maxDimension_x:
                    maxDimension_x = y2 +5           

    blot_code = [
        "// Produced by Vivaan Shahani, based on Aditya Anand's Blotinator, not human-written\n",
        f"setDocDimensions({str(maxDimension_x)}, {str(maxDimension_y)});\n",
        "const finalLines = [];\n"
    ]
    blot_code.extend(lines)
    blot_code.append("drawLines(finalLines);")

    return blot_code

# Main function
if __name__ == "__main__":
    # Use the correct image path
    image_path = '/Users/vivaanshahani/Downloads/IMG_9654.png'

    # Process the image
    contours, dimensions = process_image(image_path)

    # Generate the Blot code with the specified detail level
    blot_code = generate_blot_code(contours, dimensions, detail_level)

    # Write the Blot code to a file
    output_path = "/Users/vivaanshahani/Downloads/Blotcode.js"
    with open(output_path, "w") as file:
        file.writelines(blot_code)

    print(f"Blot code generated and saved to {output_path}")

I have tried playing around and the only thing that seems to work is adjusting the detail value and losing detail.


Solution

  • Adjust Tolerance in Contour Approximation:

    The measure.approximate_polygon function reduces the number of points in a contour based on the tolerance value. nstead of processing all contours, you could filter out smaller, less significant contours that contribute little to the overall shape. This approach reduces the number of lines by focusing only on the most important contours.

    Function to process the image and extract edges with higher precision

    def process_image(image_path, downscale_factor=0.5):
        # Load image and convert to grayscale
        image = Image.open(image_path).convert("L")
        image = ImageOps.mirror(image)  # Mirror the image horizontally
        image = ImageOps.invert(image)  # Invert to make the background black and foreground white
        image = image.rotate(180)  # Rotate the image by 180 degrees
        
        # Downscale the image
        image = image.resize((int(image.width * downscale_factor), int(image.height * downscale_factor)))
        image_array = np.array(image)
    
        # Calculate ksize (ensuring it's odd and positive)
        ksize_value = max(3, int(round(-3.333333333333 * detail_level + 5.666666666666666667)))
        if ksize_value % 2 == 0:
            ksize_value += 1
        ksize = (ksize_value, ksize_value)
    
        # Apply a slight blur to reduce noise
        blurred = cv2.GaussianBlur(image_array, ksize, 0)
    
        # Use Canny edge detection with higher thresholds to reduce edges
        canny_threshold1 = int(round(-20.333333333 * detail_level + 66.6666666666667))
        canny_threshold2 = int(round(-50.33333333 * detail_level + 150.666666667))
        edges = cv2.Canny(blurred, canny_threshold1, canny_threshold2)
    
        # Optionally, thicken the edges slightly
        edges = transform.rescale(edges, 1.0, anti_aliasing=True)
        edges = cv2.dilate(edges, np.ones((2,2),np.uint8), iterations=1)
    
        # Use contours to find connected components
        contours = measure.find_contours(edges, 0.8)
        
        return contours, image_array.shape
    
    # Main function remains the same