pythonpandasdatetimetime-series

Efficient Conversion of Timezone-Aware Timestamps to datetime64[m] in Pandas


I have the following code that creates a DataFrame representing the data I have in my system:

import pandas as pd

data = {
    "date": [
        "2021-03-12 19:50:00-05:00", "2021-03-12 19:51:00-05:00", "2021-03-12 19:52:00-05:00",
        "2021-03-12 19:53:00-05:00", "2021-03-12 19:54:00-05:00", "2021-03-12 19:55:00-05:00",
        "2021-03-12 19:56:00-05:00", "2021-03-12 19:57:00-05:00", "2021-03-12 19:58:00-05:00",
        "2021-03-12 19:59:00-05:00", "2021-03-15 04:00:00-04:00", "2021-03-15 04:01:00-04:00",
        "2021-03-15 04:02:00-04:00", "2021-03-15 04:03:00-04:00", "2021-03-15 04:04:00-04:00",
        "2021-03-15 04:05:00-04:00", "2021-03-15 04:06:00-04:00", "2021-03-15 04:07:00-04:00",
        "2021-03-15 04:08:00-04:00", "2021-03-15 04:09:00-04:00"
    ],
    "open": [81.15, 81.14, 81.15, 81.15, 81.15, 81.17, 81.19, 81.19, 81.20, 81.23, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05],
    "high": [81.15, 81.14, 81.15, 81.15, 81.17, 81.17, 81.19, 81.19, 81.20, 81.23, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05],
    "low": [81.14, 81.14, 81.14, 81.15, 81.15, 81.17, 81.19, 81.19, 81.20, 81.23, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05],
    "close": [81.14, 81.14, 81.15, 81.15, 81.17, 81.17, 81.19, 81.19, 81.20, 81.23, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05, 81.05],
    "volume": [300.0, 100.0, 1684.0, 0.0, 1680.0, 150.0, 448.0, 0.0, 1500.0, 380.0, 162.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
}

df = pd.DataFrame(data)

print(df.info())

The output is:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20 entries, 0 to 19
Data columns (total 6 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   date    20 non-null     object 
 1   open    20 non-null     float64
 2   high    20 non-null     float64
 3   low     20 non-null     float64
 4   close   20 non-null     float64
 5   volume  20 non-null     float64
dtypes: float64(5), object(1)
memory usage: 1.1+ KB

The data type of the date column is object - it is timezone aware timestamp.

The timestamps contain timezone information that I need to remove then convert the date column to datetime64[m] (minute precision), but after applying the following conversion code:

df['date'] = df['date'].apply(lambda ts: pd.Timestamp(ts).tz_localize(None).to_numpy().astype('datetime64[m]'))

print(df.info())

The output shows that the date column has a data type of datetime64[ns] instead of datetime64[m]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20 entries, 0 to 19
Data columns (total 6 columns):
 #   Column  Non-Null Count  Dtype         
---  ------  --------------  -----         
 0   date    20 non-null     datetime64[ns]
 1   open    20 non-null     float64       
 2   high    20 non-null     float64       
 3   low     20 non-null     float64       
 4   close   20 non-null     float64       
 5   volume  20 non-null     float64       
dtypes: datetime64 , float64(5)
memory usage: 1.1 KB

How can I correctly convert the date column with timezone data to datetime64[m] in the most memory-efficient way?


Solution

  • Unfortunately there is no "minute" unit for pandas datetimes. You can choose from "D,s,ms,us,n" for day, second, millisecond, microsecond, or nanosecond respectively. This listing can be found under the "unit" argument in the docs of pandas.to_datetime

    That said, you can still parse this data and convert it to a seconds unit. The key here is understanding that pandas cannot handle having distinct timezone information (-05:00 and -04:00) in a single series (column). It can support a timezone + differing daylight savings info (as I suspect the case is here), but since it is ambiguous as to whether this is the case we’re going to need to take a trip through UTC and then let the conversion to our timezone handle whether something is in daylight savings or not.

    import pandas as pd
    
    data = {
        'raw': [
            '2021-03-12 19:50:00-05:00', '2021-03-12 19:51:00-05:00', '2021-03-12 19:52:00-05:00',
            '2021-03-12 19:53:00-05:00', '2021-03-12 19:54:00-05:00', '2021-03-12 19:55:00-05:00',
            '2021-03-12 19:56:00-05:00', '2021-03-12 19:57:00-05:00', '2021-03-12 19:58:00-05:00',
            '2021-03-12 19:59:00-05:00', '2021-03-15 04:00:00-04:00', '2021-03-15 04:01:00-04:00',
            '2021-03-15 04:02:00-04:00', '2021-03-15 04:03:00-04:00', '2021-03-15 04:04:00-04:00',
            '2021-03-15 04:05:00-04:00', '2021-03-15 04:06:00-04:00', '2021-03-15 04:07:00-04:00',
            '2021-03-15 04:08:00-04:00', '2021-03-15 04:09:00-04:00'
        ],
    }
    df = pd.DataFrame(data)
    
    df['parsed_w_timezone'] = (
        pd.to_datetime(df['raw'], format='%Y-%m-%d %H:%M:%S%z', utc=True) # 1. parse into utc
        .dt.tz_convert('US/Eastern')                                      # 2. convert to US/Eastern
        .astype('datetime64[s, US/Eastern]')                              # 3. convert nanoseconds → seconds unit
    )
    df['parsed_wo_timezone'] = df['parsed_w_timezone'].dt.tz_localize(None)
    
    print(df.dtypes)
    # raw                                      object
    # parsed_w_timezone     datetime64[s, US/Eastern]
    # parsed_wo_timezone                datetime64[s]
    # dtype: object
    
    print(df.to_string(col_space=30, index=False, justify='left'))
    # raw                            parsed_w_timezone              parsed_wo_timezone
    # 2021-03-12 19:50:00-05:00      2021-03-12 19:50:00-05:00      2021-03-12 19:50:00
    # 2021-03-12 19:51:00-05:00      2021-03-12 19:51:00-05:00      2021-03-12 19:51:00
    # 2021-03-12 19:52:00-05:00      2021-03-12 19:52:00-05:00      2021-03-12 19:52:00
    # 2021-03-12 19:53:00-05:00      2021-03-12 19:53:00-05:00      2021-03-12 19:53:00
    # 2021-03-12 19:54:00-05:00      2021-03-12 19:54:00-05:00      2021-03-12 19:54:00
    # 2021-03-12 19:55:00-05:00      2021-03-12 19:55:00-05:00      2021-03-12 19:55:00
    # 2021-03-12 19:56:00-05:00      2021-03-12 19:56:00-05:00      2021-03-12 19:56:00
    # 2021-03-12 19:57:00-05:00      2021-03-12 19:57:00-05:00      2021-03-12 19:57:00
    # 2021-03-12 19:58:00-05:00      2021-03-12 19:58:00-05:00      2021-03-12 19:58:00
    # 2021-03-12 19:59:00-05:00      2021-03-12 19:59:00-05:00      2021-03-12 19:59:00
    # 2021-03-15 04:00:00-04:00      2021-03-15 04:00:00-04:00      2021-03-15 04:00:00
    # 2021-03-15 04:01:00-04:00      2021-03-15 04:01:00-04:00      2021-03-15 04:01:00
    # 2021-03-15 04:02:00-04:00      2021-03-15 04:02:00-04:00      2021-03-15 04:02:00
    # 2021-03-15 04:03:00-04:00      2021-03-15 04:03:00-04:00      2021-03-15 04:03:00
    # 2021-03-15 04:04:00-04:00      2021-03-15 04:04:00-04:00      2021-03-15 04:04:00
    # 2021-03-15 04:05:00-04:00      2021-03-15 04:05:00-04:00      2021-03-15 04:05:00
    # 2021-03-15 04:06:00-04:00      2021-03-15 04:06:00-04:00      2021-03-15 04:06:00
    # 2021-03-15 04:07:00-04:00      2021-03-15 04:07:00-04:00      2021-03-15 04:07:00
    # 2021-03-15 04:08:00-04:00      2021-03-15 04:08:00-04:00      2021-03-15 04:08:00
    # 2021-03-15 04:09:00-04:00      2021-03-15 04:09:00-04:00      2021-03-15 04:09:00