I am trying to fit the parameters of an ODE to data with two dimensions, which should generally be possible, according to the example Fitting multidimensional datasets.
This is my failed attempt so far
import symfit as sf
import numpy as np
# data
x = np.arange(0,19)
data = 10e-4 * np.array([8,10,12,11,10,15,25,37,46,40,43,35,27,14,8,10,13,9,10])
data2 = 10e-3 * np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0])
# model
t, mp, inp = sf.variables('t, mp, inp')
tau, w = sf.parameters('tau, w')
model = {sf.D(mp, t): (-mp + inp * w) / tau }
# fitting
ode_model = sf.ODEModel(model, initial={inp: data2[0], t: 0.0, mp: data[0]})
fit = sf.Fit(ode_model, inp=data2, t=x, mp=data)
fit_result = fit.execute()
It seems I'm not correctly defining inp
in the model definition. I'm getting the following error TypeError: got an unexpected keyword argument 'inp'
. I suspect that I'm making a mistake in providing inp
as named_data
to sf.Fit()
as ist does not appear to be an independent variable in the model documentation sf.Fit()
This is the full error message:
/usr/local/lib/python3.10/dist-packages/symfit/core/fit.py in __init__(self, model, objective, minimizer, constraints, absolute_sigma, *ordered_data, **named_data)
372 # Bind as much as possible the provided arguments.
373 signature = self._make_signature()
--> 374 bound_arguments = signature.bind_partial(*ordered_data, **named_data)
375
376 # Select objective function to use. Has to be done before calling
/usr/lib/python3.10/inspect.py in bind_partial(self, *args, **kwargs)
3191 Raises `TypeError` if the passed arguments can not be bound.
3192 """
-> 3193 return self._bind(args, kwargs, partial=True)
3194
3195 def __reduce__(self):
/usr/lib/python3.10/inspect.py in _bind(self, args, kwargs, partial)
3173 arguments[kwargs_param.name] = kwargs
3174 else:
-> 3175 raise TypeError(
3176 'got an unexpected keyword argument {arg!r}'.format(
3177 arg=next(iter(kwargs))))
TypeError: got an unexpected keyword argument 'inp'
Could someone help? Thank you so so much :-)
inp
has to be defined as an expression and integrated into the expression d mp / dt
. To do so, the data for inp
has to be fit so as to reproduce data2. Since data2 looks like a square wave, a Fourier series is used to fit the data. The following is the code implementing these ideas:
import symfit as sf
import numpy as np
from functools import reduce
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.integrate import solve_ivp
def square_wave_symbolic(x, L, shift, n=8):
return reduce(lambda a, b: a + b, [sf.sin(2*(1+2 *k) *sf.pi * (x+shift) / L)/(1+2* k) for k in range(n)])
def square_wave_numeric(x, L, shift, n=8):
return reduce(lambda a, b: a + b, [np.sin(2*(1+2 *k) *np.pi * (x+shift) / L)/(1+2* k) for k in range(n)])
# data
x = np.arange(0,19)
data = 10e-4 * np.array([8,10,12,11,10,15,25,37,46,40,43,35,27,14,8,10,13,9,10])
data2 = 10e-3 * np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0])
# Fit square wave
alpha0 = 5E-3
beta0 = 5E-3
L0 = 18
shift0 = -4
n = 9
plt.figure()
plt.title('Approximation of inp using Fourier Series')
result = curve_fit(lambda x, alpha, beta, shift, L: alpha + beta * square_wave_numeric(x, L, shift, n=n), x, data2, p0=(alpha0, beta0, shift0, L0), full_output=True)
alpha, beta, shift, Lf = result[0]
plt.scatter(x, data2, label='Original data')
plt.plot(x, alpha + beta * square_wave_numeric(x, Lf, shift, n=n), label='Fit data')
plt.legend()
# model
t, mp = sf.variables('t, mp')
tau, w = sf.parameters('tau, w')
inp = alpha + beta * square_wave_symbolic(t, Lf, shift, n=n)
model = {sf.D(mp, t): (-mp + inp * w) / tau }
# fitting
ode_model = sf.ODEModel(model, {t: 0.0, mp: data[0]})
fit = sf.Fit(ode_model, t=x, mp=data)
fit_result = fit.execute()
print(fit_result.params)
w = fit_result.params['w']
tau = fit_result.params['tau']
# Verify parameters by solving numerically
def f(t, x, w, tau):
mp = x[0]
inp = alpha + beta * square_wave_numeric(t, Lf, shift, n=n)
return np.array([(-mp + inp * w) / tau])
t0 = x[0]
tf = x[-1]
t_eval = np.linspace(t0, tf, 200)
ode_result = solve_ivp(f, (t0, tf), (data[0],), t_eval=t_eval, args=(w, tau), method='Radau')
plt.figure()
plt.scatter(x, data, label='Original data')
plt.plot(ode_result.t, ode_result.y[0], label='ODE solver data')
plt.legend()
I end up with the following value for fit_result.params
:
OrderedDict([('tau', 1.191491195628205), ('w', 3.4675371620653133)])
The following are the plot for inp
variable fit:
ODE fit plot:
Notes:
The square wave function describing inp
is not smooth. I am not sure about where the data comes from, but if this is just some test data, the real data may have to be fit using a different function.
It would make sense to do the ODE and inp
function fit together. Doing it using a minimize
function is feasible. I am not sure how this could be done with symfit as I am not familiar with this library.