I'm encountering a KeyError
when trying to use the .apply()
method on a pandas DataFrame after performing a groupby
. The goal is to calculate the weighted average baced on the Industry_adjusted_return column. The error indicates that the 'Industry_adjusted_return'
column cannot be found. Below is a minimal example that reproduces the issue:
```
import pandas as pd
# Creating a small DataFrame
data = {
'ISIN': ['DE000A1DAHH0', 'DE000KSAG888'],
'Date': ['2017-03-01', '2017-03-01'],
'MP_quintile': [0, 0],
'Mcap_w': [8089460.00, 4154519.75],
'Industry_adjusted_return': [-0.00869, 0.043052]
}
df = pd.DataFrame(data)
df['Date'] = pd.to_datetime(df['Date']) # Ensure 'Date' is datetime type
I'm using Python 3.8 with pandas version 1.3.3. Any insights into why this error occurs and how to fix it would be greatly appreciated.
code:
for i,grouped in wa.groupby(['Date','MP_quintile']):
print(i,grouped)
weighted_average_returns = grouped.apply(lambda x: (x['Industry_adjusted_return'] * (x['Mcap_w'] / x['Mcap_w'].sum())).sum())
the Error
{
"name": "KeyError",
"message": "'Industry_adjusted_return'",
"stack": "---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File c:\\Users\\mbkoo\\anaconda3\\envs\\myenv\\Lib\\site-packages\\pandas\\core\\indexes\\base.py:3802, in Index.get_loc(self, key, method, tolerance)
3801 try:
-> 3802 return self._engine.get_loc(casted_key)
3803 except KeyError as err:
File c:\\Users\\mbkoo\\anaconda3\\envs\\myenv\\Lib\\site-packages\\pandas\\_libs\\index.pyx:138, in pandas._libs.index.IndexEngine.get_loc()
File c:\\Users\\mbkoo\\anaconda3\\envs\\myenv\\Lib\\site-packages\\pandas\\_libs\\index.pyx:146, in pandas._libs.index.IndexEngine.get_loc()
File pandas\\_libs\\index_class_helper.pxi:49, in pandas._libs.index.Int64Engine._check_type()
KeyError: 'Industry_adjusted_return'
The above exception was the direct cause of the following exception:
KeyError Traceback (most recent call last)
Cell In[10], line 8
3 print(i,grouped)
4 #weighted_average_returns = grouped.apply( lambda x: ((x['Mcap_w'] / x['Mcap_w'].sum()))).sum()
5 # grouped['weights_EW'] = 1 / len(grouped)
6 # grouped['return_EW'] = grouped['Industry_adjusted_return'] * grouped['weights_EW']
----> 8 weighted_average_returns = grouped.apply(lambda x: (x['Industry_adjusted_return'] * (x['Mcap_w'] / x['Mcap_w'].sum())).sum()) #
9 # equally_weighted_returns=grouped['return_EW'].sum()
10 # # _df=cpd.from_dataframe(_df,allow_copy=True)
11 break
File c:\\Users\\pandas\\core\\frame.py:9568, in DataFrame.apply(self, func, axis, raw, result_type, args, **kwargs)
9557 from pandas.core.apply import frame_apply
9559 op = frame_apply(
9560 self,
9561 func=func,
(...)
9566 kwargs=kwargs,
9567 )
-> 9568 return op.apply().__finalize__(self, method=\"apply\")
File c:\\Users\\pandas\\core\\apply.py:764, in FrameApply.apply(self)
761 elif self.raw:
762 return self.apply_raw()
--> 764 return self.apply_standard()
File c:\\Users\\pandas\\core\\apply.py:891, in FrameApply.apply_standard(self)
890 def apply_standard(self):
--> 891 results, res_index = self.apply_series_generator()
893 # wrap results
894 return self.wrap_results(results, res_index)
File c:\\Users\\pandas\\core\\apply.py:907, in FrameApply.apply_series_generator(self)
904 with option_context(\"mode.chained_assignment\", None):
905 for i, v in enumerate(series_gen):
906 # ignore SettingWithCopy here in case the user mutates
--> 907 results[i] = self.f(v)
908 if isinstance(results[i], ABCSeries):
909 # If we have a view on v, we need to make a copy because
910 # series_generator will swap out the underlying data
911 results[i] = results[i].copy(deep=False)
Cell In[10], line 8, in <lambda>(x)
3 print(i,grouped)
4 #weighted_average_returns = grouped.apply( lambda x: ((x['Mcap_w'] / x['Mcap_w'].sum()))).sum()
5 # grouped['weights_EW'] = 1 / len(grouped)
6 # grouped['return_EW'] = grouped['Industry_adjusted_return'] * grouped['weights_EW']
----> 8 weighted_average_returns = grouped.apply(lambda x: (x['Industry_adjusted_return'] * (x['Mcap_w'] / x['Mcap_w'].sum())).sum()) #
9 # equally_weighted_returns=grouped['return_EW'].sum()
10 # # _df=cpd.from_dataframe(_df,allow_copy=True)
11 break
File c:\\Users\\pandas\\core\\series.py:981, in Series.__getitem__(self, key)
978 return self._values[key]
980 elif key_is_scalar:
--> 981 return self._get_value(key)
983 if is_hashable(key):
984 # Otherwise index.get_value will raise InvalidIndexError
985 try:
986 # For labels that don't resolve as scalars like tuples and frozensets
File c:\\Users\\pandas\\core\\series.py:1089, in Series._get_value(self, label, takeable)
1086 return self._values[label]
1088 # Similar to Index.get_value, but we do not fall back to positional
-> 1089 loc = self.index.get_loc(label)
1090 return self.index._get_values_for_loc(self, loc, label)
File c:\\Users\\pandas\\core\\indexes\\base.py:3804, in Index.get_loc(self, key, method, tolerance)
3802 return self._engine.get_loc(casted_key)
3803 except KeyError as err:
-> 3804 raise KeyError(key) from err
3805 except TypeError:
3806 # If we have a listlike key, _check_indexing_error will raise
3807 # InvalidIndexError. Otherwise we fall through and re-raise
3808 # the TypeError.
3809 self._check_indexing_error(key)
KeyError: 'Industry_adjusted_return'"
}
You should access the columns directly from grouped
when calculating the weighted average. No need to use .apply()
in this case since you're applying a vectorized operation:
import pandas as pd
data = {
'ISIN': ['DE000A1DAHH0', 'DE000KSAG888'],
'Date': ['2017-03-01', '2017-03-01'],
'MP_quintile': [0, 0],
'Mcap_w': [8089460.00, 4154519.75],
'Industry_adjusted_return': [-0.00869, 0.043052]
}
df = pd.DataFrame(data)
df['Date'] = pd.to_datetime(df['Date'])
for i, grouped in df.groupby(['Date', 'MP_quintile']):
print(f"Group: {i}\n{grouped}")
weighted_average_returns = (grouped['Industry_adjusted_return'] * (grouped['Mcap_w'] / grouped['Mcap_w'].sum())).sum()
print(f"Weighted Average Returns: {weighted_average_returns}\n")
which returns
Group: (Timestamp('2017-03-01 00:00:00'), 0)
ISIN Date MP_quintile Mcap_w Industry_adjusted_return
0 DE000A1DAHH0 2017-03-01 0 8089460.00 -0.008690
1 DE000KSAG888 2017-03-01 0 4154519.75 0.043052
Weighted Average Returns: 0.008866641328527188