I have a dataframe. I would like group by col1, order by col3 and detect changes from row to row in col2.
Here is my example:
import pandas as pd
import datetime
my_df = pd.DataFrame({'col1': ['a', 'a', 'a', 'b', 'b', 'b'],
'col2': [2, 2, 3, 5, 5, 5],
'col3': [datetime.date(2023, 2, 1),
datetime.date(2023, 3, 1),
datetime.date(2023, 4, 1),
datetime.date(2023, 2, 1),
datetime.date(2023, 3, 1),
datetime.date(2023, 4, 1)]})
my_df.sort_values(by=['col3'], inplace=True)
my_df_temp = my_df.groupby('col1')['col2'].apply(
lambda x: x != x.shift(1)
).reset_index(name='col2_change')
Here is how my dataframe looks:
col1 col2 col3
0 a 2 2023-02-01
1 a 2 2023-03-01
2 a 3 2023-04-01
3 b 5 2023-02-01
4 b 5 2023-03-01
5 b 5 2023-04-01
Here is how result looks like:
col1 level_1 col2_change
0 a 0 True
1 a 1 False
2 a 2 True
3 b 3 True
4 b 4 False
5 b 5 False
This is clearly incorrect. What am I doing wrong?
First of all, your issue is not obvious, you should provide the expected output for clarity.
I imagine that you want to add a new column and keep the original existing columns unchanged. For that you would need to use groupby.transform
:
my_df['col2_change'] = (my_df
.groupby('col1')['col2']
.transform(lambda x: x != x.shift())
)
Variant with groupby.shift
:
my_df['col2_change'] = (my_df
.groupby('col1')['col2']
.shift().ne(my_df['col2'])
)
In addition, if you don't want to map the first value of a group as True
you could perform a double shift
:
my_df['col2_change2'] = (my_df
.groupby('col1')['col2']
.transform(lambda x: x.ne(x.shift(-1))
.shift(fill_value=False))
)
NB. a double shift is preferred to bfill
that would incorrectly fill internal NaNs if any.
Or using duplicated
and where
:
my_df['col2_change2'] = (my_df
.groupby('col1')['col2']
.transform(lambda x: x != x.shift())
.where(my_df['col1'].duplicated(), False)
)
Output:
col1 col2 col3 col2_change col2_change2
0 a 2 2023-02-01 True False
3 b 5 2023-02-01 True False
1 a 2 2023-03-01 False False
4 b 5 2023-03-01 False False
2 a 3 2023-04-01 True True
5 b 5 2023-04-01 False False